
#1

Simply-TypedSimply-Typed
Lambda CalculusLambda Calculus

#2

The Reading
• Explain the Xavier Leroy article to me …

• How did he do register allocation?

#3

Back to School

• What is operational semantics? When would
you use contextual (small-step) semantics?

• What is denotational semantics?
• What is axiomatic semantics? What is a

verification condition?

#4

Today’s (Short?) Cunning Plan

• Type System Overview
• First-Order Type Systems
• Typing Rules
• Typing Derivations
• Type Safety

#5

Types
• A program variable can assume a range of

values during the execution of a program

• An upper bound of such a range is called a
type of the variable
– A variable of type “bool” is supposed to assume

only boolean values
– If x has type “bool” then the boolean expression

“not(x)” has a sensible meaning during every run
of the program

#6

Typed and Untyped Languages

• Untyped languages
– Do not restrict the range of values for a given variable
– Operations might be applied to inappropriate arguments.

The behavior in such cases might be unspecified
– The pure λ-calculus is an extreme case of an untyped

language (however, its behavior is completely specified)

• (Statically) Typed languages
– Variables are assigned (non-trivial) types
– A type system keeps track of types
– Types might or might not appear in the program itself
– Languages can be explicitly typed or implicitly typed

#7

The Purpose Of Types
• The foremost purpose of types is to prevent certain

types of run-time execution errors
• Traditional trapped execution errors

– Cause the computation to stop immediately
– And are thus well-specified behavior
– Usually enforced by hardware
– e.g., Division by zero, floating point op with a NaN
– e.g., Dereferencing the address 0 (on most systems)

• Untrapped execution errors
– Behavior is unspecified (depends on the state of the

machine = this is very bad!)
– e.g., accessing past the end of an array
– e.g., jumping to an address in the data segment

#8

Execution Errors
• A program is deemed safe if it does not cause untrapped

errors
– Languages in which all programs are safe are safe languages

• For a given language we can designate a set of forbidden
errors
– A superset of the untrapped errors, usually including some trapped

errors as well
• e.g., null pointer dereference

• Modern Type System Powers:
– prevent race conditions (e.g., Flanagan TLDI ‘05)
– prevent insecure information flow (e.g., Li POPL ’05)
– prevent resource leaks (e.g., Vault, Weimer)
– help with generic programming, probabilistic languages, …
– … are often combined with dynamic analyses (e.g., CCured)

#9

Preventing Forbidden Errors -
Static Checking

• Forbidden errors can be caught by a
combination of static and run-time checking

• Static checking
– Detects errors early, before testing
– Types provide the necessary static information for

static checking
– e.g., ML, Modula-3, Java
– Detecting certain errors statically is undecidable

in most languages

#10

Preventing Forbidden Errors -
Dynamic Checking

• Required when static checking is undecidable
– e.g., array-bounds checking

• Run-time encodings of types are still used
(e.g. Lisp)

• Should be limited since it delays the
manifestation of errors

• Can be done in hardware (e.g. null-pointer)

#11

Why Typed Languages?

• Development
– Type checking catches early many mistakes
– Reduced debugging time
– Typed signatures are a powerful basis for design
– Typed signatures enable separate compilation

• Maintenance
– Types act as checked specifications
– Types can enforce abstraction

• Execution
– Static checking reduces the need for dynamic checking
– Safe languages are easier to analyze statically

• the compiler can generate better code

#12

Why Not Typed Languages?

• Static type checking imposes constraints on the
programmer
– Some valid programs might be rejected
– But often they can be made well-typed easily
– Hard to step outside the language (e.g. OO programming

in a non-OO language, but cf. Ruby, OCaml, etc.)

• Dynamic safety checks can be costly
– 50% is a possible cost of bounds-checking in a tight loop

• In practice, the overall cost is much smaller

– Memory management must be automatic) need a
garbage collector with the associated run-time costs

– Some applications are justified in using weakly-typed
languages (e.g., by external safety proof)

#13

Safe Languages
• There are typed languages that are not safe

(“weakly typed languages”)
• All safe languages use types (static or dynamic)

• We focus on statically typed languages

Assembly?C, C++,
Pascal, ...

Unsafe

λ-calculusLisp, Scheme, Ruby,
Perl, Smalltalk,
PHP, Python, …

ML, Java,
Ada, C#,

Haskell, ...

Safe

DynamicStatic

UntypedTyped

#14

Properties of Type Systems
• How do types differ from other program

annotations?
– Types are more precise than comments
– Types are more easily mechanizable than program

specifications

• Expected properties of type systems:
– Types should be enforceable
– Types should be checkable algorithmically
– Typing rules should be transparent

• Should be easy to see why a program is not well-typed

#15

Why Formal Type Systems?

• Many typed languages have informal
descriptions of the type systems (e.g., in
language reference manuals)

• A fair amount of careful analysis is required
to avoid false claims of type safety

• A formal presentation of a type system is a
precise specification of the type checker
– And allows formal proofs of type safety

• But even informal knowledge of the principles
of type systems help

#16

Formalizing a Language
1. Syntax

• Of expressions (programs)
• Of types
• Issues of binding and scoping

2. Static semantics (typing rules)
• Define the typing judgment and its derivation rules

3. Dynamic Semantics (e.g., operational)
• Define the evaluation judgment and its derivation rules

4. Type soundness
• Relates the static and dynamic semantics
• State and prove the soundness theorem

#17

Typing Judgments

• Judgment (recall)
– A statement J about certain formal entities
– Has a truth value ² J

– Has a derivation ` J (= “a proof”)

• A common form of typing judgment:
Γ ` e : τ		 (e is an expression and τ is a type)

• Γ (Gamma) is a set of type assignments for the free
variables of e
– Defined by the grammar Γ ::= ¢ | Γ, x : τ
– Type assignments for variables not free in e are not

relevant
– e.g, x : int, y : int ` x + y : int

#18

Typing rules

• Typing rules are used to derive typing
judgments

• Examples:

#19

Typing Derivations

• A typing derivation is a derivation of a typing
judgment (big surprise there …)

• Example:

• We say Γ ` e : τ to mean there exists a derivation of
this typing judgment (= “we can prove it”)

• Type checking: given Γ, e and τ find a derivation
• Type inference: given Γ and e, find τ and a

derivation

#20

Proving Type Soundness

• A typing judgment is either true or false
• Define what it means for a value to have a type

v 2 k τ k
(e.g. 5 2 k int k and true 2 k bool k)

• Define what it means for an expression to have a
type

e 2 j τ j iff 8v. (e ⇓ v) v 2 k τ k)
• Prove type soundness

If ¢ ` e : τ then e 2 j τ j
or equivalently

If ¢ ` e : τ and e ⇓ v then v 2 k τ k
• This implies safe execution (since the result of a

unsafe execution is not in k τ k for any τ)

#21

Upcoming Exciting Episodes
• We will give formal description of first-order type

systems (no type variables)
– Function types (simply typed λ-calculus)

– Simple types (integers and booleans)
– Structured types (products and sums)
– Imperative types (references and exceptions)
– Recursive types (linked lists and trees)

• The type systems of most common languages are
first-order

• Then we move to second-order type systems
– Polymorphism and abstract types

Q: Movies (378 / 842)

• This 1988 animated movie written
and directed by Isao Takahata for
Studio Ghibli was considered by
Roger Ebert to be one of the most
powerful anti-war films ever made.
It features Seita and his sister
Setsuko and their efforts to survive
outside of society during the
firebombing of Tokyo.

Q: Games (504 / 842)

•This 1985 falling-blocks
computer game was invented by
Alexey Pajitnov (Алексей
Пажитнов) and inspired by
pentominoes.

Q: Books (777 / 842)

• Give the last word in all of the
following 4 young adult book titles:
– My Side of the by Jean Craighead

George
– Charlotte's by E. B. White
– Sadako and the 1000 Paper by

Eleanor Coerr
– Little House in the Big by Laura

Ingalls Wilder

Q: Cartoons (679 / 842)

• In this 1984 cartoon, the title
character and her white sprite
Twink rescue the seven "Color Kids"
and use the "Color Belt" to bring
color to the land and fight Murky
Dismal. The Color Kids include such
members as Red Butler, Buddy Blue
and Lala Orange.

Q: Books (711 / 842)

•In this 1943 Antoine de Saint-
Exupery novel the title
character lives on an asteroid
with a rose but eventually
travels to Earth.

Q: Advertising (792 / 842)

• Name either the restaurant or the
candidate described below.
"Where's the beef?" was used in a
1984 series of commercials for this
fast food chain. It was also used
successfully by a 1984 presidential
hopeful during the primaries to
criticize the "new ideas" campaign
of Gary Hart.

Q: Cartoons (658 / 842)

•Some of this 1973-1985 cartoon's
features were "Conjunction
Junction", "A Noun is a Person,
Place or Thing" and "I'm Just A
Bill". It also included electronics
segments featuring Scooter
Computer and Mr. Chips.

#29

Simply-Typed Lambda Calculus
• Syntax:

Terms e ::= x | λx:τ. e | e1 e2

 | n | e1 + e2 | iszero e
 | true | false | not e

 | if e1 then e2 else e3

 Types τ ::= int | bool | τ1 ! τ2

• τ1 ! τ2 is the function type

• ! associates to the right
• Arguments have typing annotations :τ
• This language is also called F1

Notice :τ

#30

Static Semantics of F1

• The typing judgment

Γ ` e : τ
• Some (simpler) typing rules:

#31

More Static Semantics of F1

Why do we have this mysterious gap? I don’t know either!

#32

Typing Derivation in F1

• Consider the term
λx : int. λb : bool. if b then f x else x

– With the initial typing assignment f : int ! Int

– Where Γ = f : int ! int, x : int, b : bool

#33

Type Checking in F1

• Type checking is easy because
– Typing rules are syntax directed
– Typing rules are compositional (what does this mean?)
– All local variables are annotated with types

• In fact, type inference is also easy for F1

• Without type annotations an expression may have no
unique type

¢ ` λx. x : int ! int

¢ ` λx. x : bool ! bool

#34

Operational Semantics of F1

• Judgment:

e ⇓ v
• Values:

v ::= n | true | false | λx:τ. e
• The evaluation rules …

– Audience participation time: raise your hand and
give me an evaluation rule.

#35

Opsem of F1 (Cont.)

• Call-by-value evaluation rules (sample)

Evaluation is
undefined for ill-
typed programs !

Where is the
Call-By-Value?
How might we

change it?

#36

Type Soundness for F1

• Theorem: If ¢ ` e : τ and e ⇓ v then ¢ ` v : τ
– Also called, subject reduction theorem, type

preservation theorem

• This is one of the most important sorts of
theorems in PL

• Whenever you make up a new safe language
you are expected to prove this
– Examples: Vault, TAL, CCured, …

• Proof: next time!

#37

Homework

• Read Wright and Felleisen article
• Work on your projects!

– Status Update Due
• Finish Homework 5?

The reading is
not optional.

