## Lambda Calculus



- Introduce lambda calculus
- Syntax

- Substitution
- Operational Semantics (... with contexts!)
- Evaluations strategies
- Equality
- Later:
- Relationship to programming languages
- Study of types and type systems


## Lambda Background

- Developed in 1930’s by Alonzo Church
- Subsequently studied by many people
- Still studied today!
- Considered the "testbed" for procedural and functional languages
- Simple
- Powerful
- Easy to extend with new features of interest
- Lambda:PL :: Turning Machine:Complexity
- Somewhat like a crowbar ...
"Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus."
(Landin '66)


## Lambda Syntax

- The $\lambda$-calculus has 3 kinds of expressions (terms)

$$
\begin{array}{rll}
\text { e }::=x & \text { Variables } \\
\mid & \lambda x . e & \text { Functions (abstractions) } \\
\mid & e_{1} e_{2} & \text { Application }
\end{array}
$$

- $\lambda x$. e is a one-argument anonymous function with body e
- $\mathrm{e}_{1} \mathrm{e}_{2}$ is a function application
- Application associates to the left

$$
x \text { y } z===(x y) z
$$

- Abstraction extends far to the right

$$
\lambda x . x \lambda y . x y z===\lambda x .(x[\lambda y .\{(x y) z\}])
$$

## Why Should I Care?

- A language with 3 expressions? Woof!
- Li and Zdancewic. Downgrading policies and relaxed noninterference. POPL '05
- Just one example of a recent PL/security paper


## 4. LOCAL DOWNGRADING POLICIES

### 4.1 Label Definition

Definition 4.1.1 (The policy language). In Figure 1.

| Types | $\tau::=$ int $\mid \tau \rightarrow \tau$ |  |
| :--- | :---: | :--- |
| Constants | $c::=c_{i}$ |  |
| Operators | $\oplus::=+,-,=\ldots$ |  |
| Terms | $m::=\lambda x: \tau . m\|m m\| x\|c\| m \oplus m$ |  |
| Policies | $n::=$ | $\lambda x:$ int. $m$ |
| Labels | $l::=$ | $\left\{n_{1}, \ldots, n_{k}\right\} \quad(k \geq 1)$ |

Figure 1: $\mathbb{L}_{\text {local }}$ Label Syntax

The core of the policy language is a variant of the simplytyped $\lambda$-calculus with a base type, binary operators and constants. A downgrading policy is a $\lambda$-term that specifies how an integer can be downgraded: when this $\lambda$-term is applied to the annotated integer, the result becomes public. A

$$
\begin{array}{cc}
\frac{\Gamma \vdash m: \tau}{\Gamma \vdash m \equiv m: \tau} & \text { Q-REFL } \\
\frac{\Gamma \vdash m_{1} \equiv m_{2}: \tau}{\Gamma \vdash m_{2} \equiv m_{1}: \tau} & \text { Q-SYMM }
\end{array}
$$

$$
\frac{\Gamma \vdash m_{1} \equiv m_{2}: \tau \quad \Gamma \vdash m_{2} \equiv m_{3}: \tau}{\Gamma \vdash m_{1} \equiv m_{3}: \tau} \quad \text { Q-TRANS }
$$

$$
\frac{\Gamma, x: \tau_{1} \vdash m_{1} \equiv m_{2}: \tau_{2}}{\Gamma \vdash \lambda x: \tau_{1} . m_{1} \equiv \lambda x: \tau_{1} . m_{2}: \tau_{1} \rightarrow \tau_{2}} \quad \text { Q-ABS }
$$

$$
\begin{gathered}
\Gamma \vdash m_{1} \equiv m_{2}: \tau_{1} \rightarrow \tau_{2} \\
\frac{\Gamma \vdash m_{3} \equiv m_{4}: \tau_{1}}{\Gamma \vdash m_{1} m_{3} \equiv m_{2} m_{4}: \tau_{2}} \\
\Gamma \vdash m_{1} \equiv m_{2}: \mathrm{int} \\
\Gamma \vdash m_{3} \equiv m_{4}: \mathrm{int} \\
\hline \Gamma \vdash m_{1} \oplus m_{3} \equiv m_{2} \oplus m_{4}: \mathrm{int}
\end{gathered}
$$

## Lambda Celebrity Representative

- Milton Friedman?
- Morgan Freeman?
- C. S. Friedman?



## Gordon Freeman

- Best-selling PC FPS to date ...



## Examples of Lambda Expressions

- The identity function:

$$
I={ }_{\text {def }} \lambda x . x
$$

- A function that, given an argument y, discards it and yields the identity function:

$$
\lambda y \cdot(\lambda x . x)
$$

- A function that, given an function $f$, invokes it on the identity function:

$$
\lambda f . f(\lambda x . x)
$$


"There goes our grant money."

## Scope of Variables

- As in all languages with variables, it is important to discuss the notion of scope
- The scope of an identifier is the portion of a program where the identifier is accessible
- An abstraction $\lambda x$. $E$ binds variable $x$ in $E$
$-x$ is the newly introduced variable
$-E$ is the scope of $x$
(unless x is shadowed)
- We say $x$ is bound in $\lambda x$. $E$
- Just like formal function arguments are bound in the function body


## Free and Bound Variables

- A variable is said to be free in $E$ if it has occurrences that are not bound in E
- We can define the free variables of an expression E recursively as follows:
- Free(x) = \{x\}
$-\operatorname{Free}\left(E_{1} E_{2}\right)=\operatorname{Free}\left(E_{1}\right) \cup \operatorname{Free}\left(E_{2}\right)$
- Free( $\lambda x$. E) = Free(E) - $\{x\}$
- Example: $\operatorname{Free}(\lambda x . x(\lambda y, x y z))=\{z\}$
- Free variables are (implicitly or explicitly) declared outside the expression


## Free Your Mind!

- Just as in any language with statically-nested scoping we have to worry about variable shadowing
- An occurrence of a variable might refer to different things in different contexts
- Example in IMP with locals:

$$
\text { let } x=5 \text { in } x+(\text { let } x=\underline{9} \text { in } \underline{x})+x
$$

- In $\lambda$-calculus:

$$
\lambda x . x(\lambda \underline{x} \cdot \underline{x}) x
$$

## Renaming Bound Variables

- $\lambda$-terms that can be obtained from one another by renaming bound variables are considered identical
- This is called $\underline{\alpha}$-equivalence
- Renaming bound vars is called $\alpha$-renaming
- Ex: $\lambda x . x$ is identical to $\lambda y . y$ and to $\lambda z . z$
- Intuition:
- By changing the name of a formal argument and all of its occurrences in the function body, the behavior of the function does not change
- In $\lambda$-calculus such functions are considered identical


## Make It Easy On Yourself

- Convention: we will always try to rename bound variables so that they are all unique
- e.g., write $\lambda x . x(\lambda y . y) x$ instead of $\lambda x . x(\lambda x . x) x$
- This makes it easy to see the scope of bindings and also prevents confusion!



## Substitution

- The substitution of $F$ for $x$ in $E$ (written [ $F / x] E$ )
- Step 1. Rename bound variables in $E$ and $F$ so they are unique
- Step 2. Perform the textual substitution of $f$ for $X$ in $E$
- Called capture-avoiding substitution
- Example: [y ( $\lambda x . x) / x] \lambda y .(\lambda x . x) y x$
- After renaming: $[y(\lambda x . x) / x] \lambda z .(\lambda u . u) z x$
- After substitution: $\lambda z .(\lambda u . u) z(y(\lambda x . x))$
- If we are not careful with scopes we might get:
$\lambda y .(\lambda x . x) y(y(\lambda x . x)) \quad \leftarrow$ wrong!


## The De Bruijn Notation

- An alternative syntax that avoids naming of bound variables (and the subsequent confusions)
- The De Bruijn index of a variable occurrence is that number of lambda that separate the occurrence from its binding lambda in the abstract syntax tree
- The De Bruijn notation replaces names of occurrences with their De Bruijn indices
- Examples:

$$
\begin{aligned}
& -\lambda x . x \\
& -\quad \lambda x . \lambda x . x \\
& -\quad \lambda x . \lambda y . y \\
& -\quad(\lambda x . x \mathrm{x})(\lambda \mathrm{z} . \mathrm{zz}) \\
& -\quad \lambda \mathrm{x} .(\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{x}) \mathrm{x}
\end{aligned}
$$

$\lambda .0$
$\lambda . \lambda .0$
$\lambda . \lambda .0$
( $\lambda .00$ ) ( $\lambda .00$ )
$\lambda .(\lambda . \lambda .1) 0$

## Identical terms have identical representations!

## Combinators

- A $\lambda$-term without free variables is closed or a combinator
- Some interesting combinators:

$$
\begin{array}{ll}
\mathrm{I} & =\lambda \mathrm{x} \cdot \mathrm{x} \\
\mathrm{~K} & =\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{x} \\
\mathrm{~S} & =\lambda \mathrm{f} \cdot \lambda \mathrm{~g} \cdot \lambda \mathrm{x} \cdot \mathrm{fx}(\mathrm{gx}) \\
\mathrm{D} & =\lambda \mathrm{x} \cdot \mathrm{x} \mathrm{x} \\
\mathrm{Y} & =\lambda \mathrm{f} \cdot(\lambda \mathrm{x} \cdot \mathrm{f}(\mathrm{xx}))(\lambda \mathrm{x} \cdot \mathrm{f}(\mathrm{xx}))
\end{array}
$$

- Theorem: any closed term is equivalent to one written with just $\mathrm{S}, \mathrm{K}$ and I
- Example: D $=_{\beta}$ SII
- (we'll discuss this form of equivalence later)
Q: Music (241 / 842)
- Name the singer and his crossover 1982 album that holds (as of 2005) the record of being the best-selling album of all-original material in the US (26 times platinum, 37 weeks as Billboard \#1). Much of that success was the result of the singer's use of the MTV music video.


## Q: Movies (262 / 842)

- Name two of the three rules given for the pet Gizmo in the 1984 movie Gremlins.



## Q: Movies (341 / 842)

- This 1993 Mel Brooks parody film features "The Man in Black" as "Kevin Costner" and also stars Patrick Stewart as King Richard. It includes the exchange: "And why would the people listen to you? / Because, unlike some other Robin Hoods, I can speak with an English accent."


## Q: General (452 / 842)

## - Name any 3 of

 the 22 letters in the Hebrew alphabet.| Э | 7 | コ | $\downarrow$ | $\pi$ |  | ワ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b | d | $f$ | 9 | h |  | kh |
| 7 | כ | 3 | 9 | J | 1 | \% |
|  |  | 1 | m | n | - | $\bigcirc$ |
| B | 7 | 0 | 4 | U |  | $\oplus$ |
| p | r |  |  | sh |  |  |
| 3 | ב | 1 | , | $\dagger$ | $\aleph$ | iv |
| ts |  |  | $y$ |  |  |  |

## Q: Games (489 / 842)

- This 1965 Wham-O toy is an extremely elastic sphere made of a rubber polymer with a high coefficient of restitution. When dropped from shoulder level onto a hard surface it rebounds to about $90 \%$ of its original height.


## A: Games (489 / 842)

- Super Ball
- Trivia: When Lamar Hunt saw his daughter playing with a Super Ball, it inspired him to name the new AFL-NFL World Championship Game the Super Bowl.


## Informal Semantics

- We consider only closed terms
- The evaluation of

$$
(\lambda \times . e) f
$$

- Binds $x$ to $f$
- Evaluates e with the new binding
- Yields the result of this evaluation
- Like a function call, or like "let $x=f$ in e"
- Example:

$$
(\lambda \mathrm{f} . \mathrm{f}(\mathrm{fe} \mathrm{e})) \mathrm{g} \text { evaluates to } \mathrm{g}(\mathrm{~g} \mathrm{e})
$$

## Operational Semantics

- Many operational semantics for the $\lambda$-calculus
- All are based on the equation

$$
(\lambda x . e) f={ }_{\beta}[f / x] e
$$

usually read from left to right

- This is called the $\beta$-rule and the evaluation step a $\beta$ reduction
- The subterm ( $\lambda \times$.e) f is a $\beta$-redex
- We write $\mathrm{e} \rightarrow_{\beta}$ g to say that e $\beta$-reduces to $g$ in one step
- We write e $\rightarrow_{\beta}{ }^{*}$ g to say that e $\beta$-reduces to g in 0 or more steps
- Remind you of the small-step opsem term rewriting?


## Examples of Evaluation

- The identity function:

$$
(\lambda x . x) E \rightarrow[E / x] x=E
$$

- Another example with the identity:

$$
\begin{gathered}
(\lambda f . f(\lambda x . x))(\lambda x . x) \rightarrow \\
[\lambda x . x / f] f(\lambda x . x))= \\
[\lambda x \cdot x / f] f(\lambda y \cdot y))= \\
(\lambda x \cdot x)(\lambda y \cdot y) \rightarrow \\
{[\lambda y \cdot y / x] x=\lambda y \cdot y}
\end{gathered}
$$

- A non-terminating evaluation:

$$
(\lambda x . x x)(\lambda y . y y) \rightarrow
$$



$$
[\lambda y . y y / x] x x=(\lambda y . y y)(\lambda y . y y) \rightarrow \ldots
$$

- Try T T, where $\mathrm{T}=\lambda \mathrm{x} . \mathrm{x} \mathrm{x} \mathrm{x}$


## Evaluation and the Static Scope

- The definition of substitution guarantees that evaluation respets static scoping:

$$
(\lambda x .(\lambda y . y x))(y(\lambda x . x)) \rightarrow_{\beta} \lambda z . z(y(\lambda v . v))
$$

(y remains free, i.e., defined externally)

- If we forget to rename the bound y :

$$
(\lambda x .(\lambda y . y x))(y(\lambda x . x)) \rightarrow_{\beta}{ }^{*} \lambda y . y(y(\lambda v . v))
$$

( y was free before but is bound now)

## Another View of Reduction

- The application

- Becomes:

(terms can grow substantially through $\beta$-reduction!)


## Normal Forms

- A term without redexes is in normal form
- A reduction sequence stops at a normal form
- If e is in normal form and $\mathrm{e} \rightarrow_{\beta}{ }^{*} \mathrm{f}$ then e is identical to $f$
- $K=\lambda x . \lambda y . x$ is in normal form
- K I is not in normal form


## Nondeterministic Evaluation

- We define a small-step reduction relation

$$
(\lambda x . e) f \rightarrow[f / x] e
$$

$$
\begin{gathered}
e_{1} \rightarrow e_{2} \\
e_{1} f \rightarrow e_{2} f
\end{gathered}
$$

| $f_{1}$ | $\rightarrow f_{2}$ |
| ---: | :--- |
| $e f_{1}$ | $\rightarrow e f_{2}$ |

$$
\begin{gathered}
\mathrm{e} \rightarrow \mathrm{f} \\
\lambda \mathrm{x} . \mathrm{e} \rightarrow \lambda \mathrm{x} . \mathrm{f}
\end{gathered}
$$

- This is a non-deterministic semantics
- Note that we evaluate under $\lambda$ (where?)


## Lambda Calculus Contexts

- Define contexts with one hole
- H : : = • | $\lambda \mathrm{x} . \mathrm{H}|\mathrm{He}| \mathrm{eH}$
- Write $\mathrm{H}[\mathrm{e}]$ to denote the filling of the hole in H with the expression e
- Example:

$$
H=\lambda x \cdot x \bullet \quad H[\lambda y \cdot y]=\lambda x \cdot x(\lambda y \cdot y)
$$

- Filling the hole allows variable capture!

$$
H=\lambda x . x \bullet \quad H[x]=\lambda x . x x
$$

## Contextual Opsem


$\mathrm{e} \rightarrow \mathrm{f}$
$\mathrm{H}[\mathrm{e}] \rightarrow \mathrm{H}[\mathrm{f}]$

- Contexts allow concise formulations of congruence rules (application of local reduction rules on subterms)
- Reduction occurs at a $\beta$-redex that can be anywhere inside the expression
- The latter rule is called a congruence or structural rule
- The above rules to not specify which redex must be reduced first


## The Order of Evaluation

- In a $\lambda$-term there could be more than one instance of ( $\lambda \times$.e) f, as in:
( $\lambda \mathrm{y} .(\lambda \mathrm{x}, \mathrm{x}) \mathrm{y}) \mathrm{E}$
- Could reduce the inner or outer $\lambda$
- Which one should we pick?



## The Diamond Property

- A relation R has the diamond property if whenever $e R e_{1}$ and $e R e_{2}$ then there exists $e_{3}$ such that $e_{1} R e_{3}$ and $e_{2} R e_{3}$

- $\rightarrow_{\beta}$ does not have the diamond property
- $\rightarrow_{\beta}{ }^{*}$ has the diamond property
- Also called the confluence property


## A Diamond In The Rough

- Languages defined by non-deterministic sets of rules are common
- Logic programming languages
- Expert systems
- Constraint satisfaction systems
- And thus most pointer analyses ...
- Dataflow systems
- Makefiles
- It is useful to know whether such systems have the diamond property


## (Beta) Equality

- Let $=_{\beta}$ be the reflexive, transitive and symmetric closure of $\rightarrow_{\beta}$

$$
=_{\beta} \text { is }\left(\rightarrow_{\beta} \cup \leftarrow_{\beta}\right)^{*}
$$

- That is, $e=_{\beta}$ f if e converts to $f$ via a sequence of forward and backward $\rightarrow_{\beta}$



## The Church-Rosser Theorem

- If $\mathrm{e}_{1}={ }_{\beta} \mathrm{e}_{2}$ then there exists $\mathrm{e}_{3}$ such that $\mathrm{e}_{1} \rightarrow_{\beta}{ }^{*}$ $\mathrm{e}_{3}$ and $\mathrm{e}_{2} \rightarrow{ }_{\beta}{ }^{*} \mathrm{e}_{3}$

- Proof (informal): apply the diamond property as many times as necessary


## Corollaries

- If $e_{1}={ }_{\beta} e_{2}$ and $e_{1}$ and $e_{2}$ are normal forms then $e_{1}$ is identical to $e_{2}$
- From C-R we have $\exists e_{3} . e_{1} \rightarrow_{\beta}{ }^{*} e_{3}$ and $e_{2} \rightarrow_{\beta}{ }^{*} e_{3}$
- Since $e_{1}$ and $e_{2}$ are normal forms they are identical to $\mathrm{e}_{3}$
- If $\mathrm{e} \rightarrow_{\beta}{ }^{*} \mathrm{e}_{1}$ and $\mathrm{e} \rightarrow_{\beta}{ }^{*} \mathrm{e}_{2}$ and $\mathrm{e}_{1}$ and $\mathrm{e}_{2}$ are normal forms then $e_{1}$ is identical to $e_{2}$
- "All terms have a unique normal form."


## Evaluation Strategies

- Church-Rosser theorem says that independent of the reduction strategy we will find $\leq 1$ normal form
- But some reduction strategies might find 0
- $(\lambda x . z) \xrightarrow[((\lambda y . y y)(\lambda y . y y))]{ } \rightarrow$

$$
(\lambda x . z)((\lambda y . y y)(\lambda y . y y)) \rightarrow \ldots
$$

- $(\lambda x . z)((\lambda y . y y)(\lambda y . y y)) \rightarrow z$
- There are three traditional strategies
- normal order (never used, always works)
- call-by-name (rarely used, cf. TeX)
- call-by-value (amazingly popular)


## Civilization: Call By Value

- Normal Order
- Evaluates the left-most redex not contained in another redex
- If there is a normal form, this finds it
- Not used in practice: requires partially evaluating function pointers and looking "inside" functions
- Call-By-Name ("lazy")
- Don't reduce under $\lambda$, don't evaluate a function argument (until you need to)
- Does not always evaluate to a normal form
- Call-By-Value ("eager" or "strict")
- Don't reduce under $\lambda$, do evaluate a function's argument right away
- Finds normal forms less often than the other two


## Endgame

- This time: $\lambda$ syntax, semantics, reductions, equality, ...
- Next time: encodings, real prorams, type systems, and all the fun stuff!

Wisely done, Mr.
Freeman. I will see you up ahead.

## Homawork

- Read Leroy article, think about axiomatic - Homework 5 Due Later


## Tricksy On The Board Answer

- Is this rule unsound?
$\vdash\{A \wedge p\} C_{\text {then }}\left\{B_{\text {then }}\right\} \quad \vdash\{A \wedge \neg p\} C_{\text {else }}\left\{B_{\text {else }}\right\}$ $\vdash\{A\}$ if $p$ then $C_{\text {then }}$ else $C_{\text {else }}\left\{B_{\text {then }} \vee B_{\text {else }}\right\}$
- Nope: it's our basic rule plus $2 x$ consequence

$$
\frac{\vdash\{A \wedge p\} C_{1}\{B\} \quad \vdash\{A \wedge \neg p\} C_{2}\{B\}}{\vdash\{A\} \text { if } p \text { then } c_{1} \text { else } c_{2}\{B\}}
$$

$$
\vdash A^{\prime} \Rightarrow A \vdash\{A\} \subset\{B\} \vdash B \Rightarrow B^{\prime}
$$

$$
\vdash\left\{A^{\prime}\right\} \subset\left\{B^{\prime}\right\}
$$

- Note that $B_{\text {then }} \Rightarrow B_{\text {then }} \vee B_{\text {else }}$

