Lambda Calculus

Plan

- Introduce lambda calculus
 - Syntax
 - Substitution
 - Operational Semantics (... with contexts!)
 - Evaluations strategies
 - Equality
- Later:
 - Relationship to programming languages
 - Study of types and type systems

Lambda Background

- Developed in 1930's by Alonzo Church
- Subsequently studied by many people
 - Still studied today!
- Considered the "testbed" for procedural and functional languages
 - Simple
 - Powerful
 - Easy to extend with new features of interest
 - Lambda:PL:: Turning Machine:Complexity
 - Somewhat like a crowbar ...

"Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus."

(Landin '66)

Lambda Syntax

• The λ -calculus has 3 kinds of expressions (terms)

```
e::= x Variables

| \lambda x. e Functions (<u>abstractions</u>)

| e_1 e_2 Application
```

- λx. e is a one-argument <u>anonymous function</u> with body e
- e₁ e₂ is a function application
- Application associates to the left

$$x y z === (x y) z$$

Abstraction extends far to the right

$$\lambda x. x \lambda y. x y z === \lambda x. (x [\lambda y. {(x y) z}])$$

Why Should I Care?

- A language with 3 expressions? Woof!
- Li and Zdancewic. *Downgrading policies and relaxed noninterference*. POPL '05
 - Just one example of a recent PL/security paper

4. LOCAL DOWNGRADING POLICIES

4.1 Label Definition

Definition 4.1.1 (The policy language). In Figure 1.

Types	$\tau ::=$	int $\mid \tau \rightarrow \tau$
Constants	c ::=	c_i
Operators	$\oplus ::=$	$+, -, =, \dots$
Terms	m ::=	$\lambda x : \tau. \ m \mid m \ m \mid x \mid c \mid m \oplus m$
Policies		λx :int. m
Labels	l ::=	$\{n_1,\ldots,n_k\} (k\geq 1)$

Figure 1: \mathbb{L}_{local} Label Syntax

The core of the policy language is a variant of the simply-typed λ -calculus with a base type, binary operators and constants. A **downgrading policy** is a λ -term that specifies how an integer can be downgraded: when this λ -term is applied to the annotated integer, the result becomes public. A

```
\overline{\Gamma \vdash m \equiv m : \tau} \qquad \qquad \text{Q-Refl}
\frac{\Gamma \vdash m_1 \equiv m_2 : \tau}{\Gamma \vdash m_2 \equiv m_1 : \tau} \qquad \qquad \text{Q-Symm}
\frac{\Gamma \vdash m_1 \equiv m_2 : \tau}{\Gamma \vdash m_1 \equiv m_2 : \tau} \qquad \qquad \text{Q-Trans}
\frac{\Gamma, x : \tau_1 \vdash m_1 \equiv m_2 : \tau_2}{\Gamma \vdash \lambda x : \tau_1. \ m_1 \equiv \lambda x : \tau_1. \ m_2 : \tau_1 \to \tau_2} \qquad \qquad \text{Q-Abs}
```

Q-App

Q-BINOP

 $\Gamma \vdash m : \tau$

 $\Gamma \vdash m_1 \equiv m_2 : \tau_1 \rightarrow \tau_2$

 $\Gamma \vdash m_3 \equiv m_4 : \tau_1$

 $\Gamma \vdash m_1 \ m_3 \equiv m_2 \ m_4 : \tau_2$

 $\Gamma \vdash m_1 \equiv m_2 : \mathsf{int}$

 $\Gamma \vdash m_3 \equiv m_4 : \mathsf{int}$

 $\Gamma \vdash m_1 \oplus m_3 \equiv m_2 \oplus m_4$: int

Lambda Celebrity Representative

- Milton Friedman?
- Morgan Freeman?
- C. S. Friedman?

Gordon Freeman

• Best-selling PC FPS to date ...

Examples of Lambda Expressions

• The identity function:

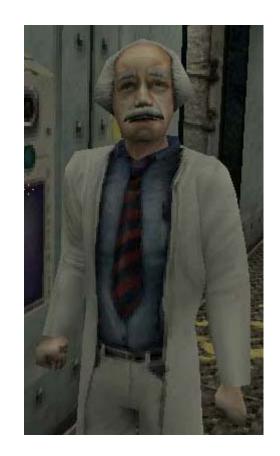
$$I =_{def} \lambda x. x$$

 A function that, given an argument y, discards it and yields the identity function:

$$\lambda y. (\lambda x. x)$$

• A function that, given an function f, invokes it on the identity function:

 $\lambda f. f (\lambda x. x)$



"There goes our grant money."

Scope of Variables

- As in all languages with variables, it is important to discuss the notion of scope
 - The <u>scope</u> of an identifier is the portion of a program where the identifier is accessible
- An abstraction λx . E binds variable x in E
 - x is the newly introduced variable
 - E is the scope of x (unless x is shadowed)
 - We say x is bound in λx . E
 - Just like formal function arguments are bound in the function body

Free and Bound Variables

- A variable is said to be <u>free</u> in E if it has occurrences that are not bound in E
- We can define the free variables of an expression E recursively as follows:
 - Free(x) = $\{x\}$
 - Free($E_1 E_2$) = Free(E_1) \cup Free(E_2)
 - Free(λx . E) = Free(E) {x}
- Example: Free(λx . x (λy . x y z)) = {z}
- Free variables are (implicitly or explicitly) declared outside the expression

Free Your Mind!

- Just as in any language with statically-nested scoping we have to worry about variable shadowing
 - An occurrence of a variable might refer to different things in different contexts
- Example in IMP with locals:

let
$$x = 5$$
 in $x + (let x = 9 in $x) + x$$

• In λ-calculus:

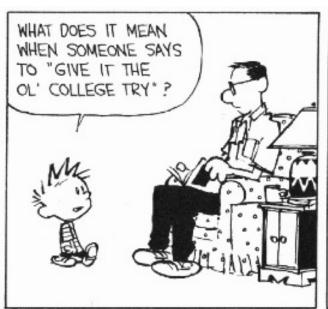
$$\lambda x. x (\lambda \underline{x}. \underline{x}) x$$

Renaming Bound Variables

- λ -terms that can be obtained from one another by renaming bound variables are considered *identical*
- This is called α -equivalence
- Renaming bound vars is called α -renaming
- Ex: λx . x is identical to λy . y and to λz . z
- Intuition:
 - By changing the name of a formal argument and all of its occurrences in the function body, the behavior of the function does not change
 - In λ -calculus such functions are considered identical

Make It Easy On Yourself

- Convention: we will always try to rename bound variables so that they are all unique
 - e.g., write λx . \times (λy .y) \times instead of λx . \times (λx . \times) \times
- This makes it easy to see the scope of bindings and also prevents confusion!



Substitution

- The substitution of F for x in E (written [F/x]E)
 - Step 1. Rename bound variables in E and F so they are unique
 - Step 2. Perform the textual substitution of f for X in E
- Called capture-avoiding substitution
- Example: [y (λx. x) / x] λy. (λx. x) y x
 - After renaming: [y (λx . x) / x] λz . (λu . u) z x
 - After substitution: λz . (λu . u) z (y (λx . x))
- If we are not careful with scopes we might get:

```
\lambda y. (\lambda x. x) y (y (\lambda x. x)) \leftarrow wrong!
```

The De Bruijn Notation

- An alternative syntax that avoids naming of bound variables (and the subsequent confusions)
- The <u>De Bruijn index</u> of a variable *occurrence* is that number of lambda that separate the occurrence from its binding lambda in the abstract syntax tree
- The <u>De Bruijn notation</u> replaces names of occurrences with their De Bruijn indices
- Examples:

- λ x. x	λ. 0	Identical terms	
- λ x. λ x. x	λ. λ. 0	have identical representations!	
- λ x. λ y. y	λ. λ. 0		
- (λ x. x x) (λ z. z z)	$(\lambda. \ 0\ 0)\ (\lambda. \ 0\ 0)$		
- λ x. (λ x. λ y. x) x	λ. (λ. λ. 1) 0		

Combinators

- A λ-term without free variables is <u>closed</u> or a <u>combinator</u>
- Some interesting combinators:

```
I = \lambda x. x

K = \lambda x. \lambda y. x

S = \lambda f. \lambda g. \lambda x. f x (g x)

D = \lambda x. x x

Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))
```

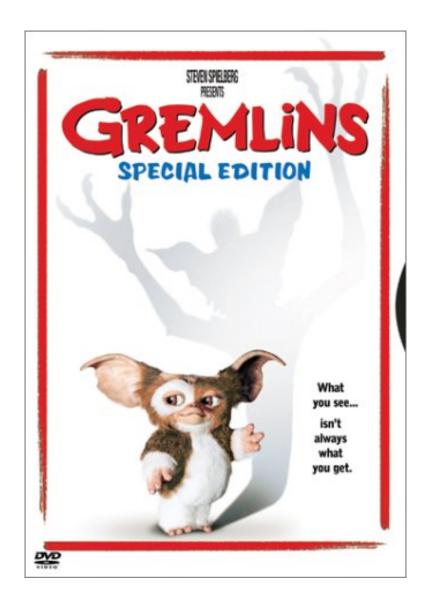
- Theorem: any closed term is equivalent to one written with just S, K and I
 - Example: $D =_{\beta} S I I$
 - (we'll discuss this form of equivalence later)

Q: Music (241 / 842)

 Name the singer and his crossover 1982 album that holds (as of 2005) the record of being the best-selling album of all-original material in the US (26 times platinum, 37 weeks as Billboard #1). Much of that success was the result of the singer's use of the MTV music video.

Q: Movies (262 / 842)

 Name two of the three rules given for the pet Gizmo in the 1984 movie
 Gremlins.



Q: Movies (341 / 842)

• This 1993 Mel Brooks parody film features "The Man in Black" as "Kevin Costner" and also stars Patrick Stewart as King Richard. It includes the exchange: "And why would the people listen to you? / Because, unlike some other Robin Hoods, I can speak with an English accent."

Q: General (452 / 842)

 Name any 3 of the 22 letters in the Hebrew alphabet.

Q: Games (489 / 842)

• This 1965 Wham-O toy is an extremely elastic sphere made of a rubber polymer with a high coefficient of restitution. When dropped from shoulder level onto a hard surface it rebounds to about 90% of its original height.

A: Games (489 / 842)

Super Ball

- Trivia: When Lamar Hunt saw his daughter playing with a Super Ball, it inspired him to name the new AFL-NFL World Championship Game the Super Bowl.

Informal Semantics

- We consider only closed terms
- The evaluation of

```
(\lambda x. e) f
```

- Binds x to f
- Evaluates e with the new binding
- Yields the result of this evaluation
- Like a function call, or like "let x = f in e"
- Example:

```
(\lambda f. f (f e)) g evaluates to g (g e)
```

Operational Semantics

- Many operational semantics for the λ -calculus
- All are based on the equation

$$(\lambda x. e) f =_{\beta} [f/x]e$$

usually read from left to right

- This is called the β -rule and the evaluation step a β -reduction
- The subterm (λ x. e) f is a β -redex
- We write $e \to_{\beta} g$ to say that $e \beta$ -reduces to g in one step
- We write $e \to_{\beta}^* g$ to say that $e \beta$ -reduces to g in 0 or more steps
 - Remind you of the small-step opsem term rewriting?

Examples of Evaluation

• The identity function:

$$(\lambda x. x) E \rightarrow [E / x] x = E$$

Another example with the identity:

$$(\lambda f. f (\lambda x. x)) (\lambda x. x) \rightarrow$$

$$[\lambda x. x / f] f (\lambda x. x)) =$$

$$[\lambda x. x / f] f (\lambda y. y)) =$$

$$(\lambda x. x) (\lambda y. y) \rightarrow$$

$$[\lambda y. y / x] x = \lambda y. y$$

A non-terminating evaluation:

$$(\lambda x. xx) (\lambda y. yy) \rightarrow$$

$$[\lambda y. yy / x] xx = (\lambda y. yy) (\lambda y. yy) \rightarrow ...$$

• Try T T, where T = λx . x x x

Evaluation and the Static Scope

 The definition of substitution guarantees that evaluation respets static scoping:

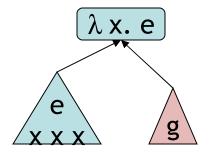
$$(\lambda x. (\lambda y. y x)) (y (\lambda x. x)) \rightarrow_{\beta} \lambda z. z (y (\lambda v. v))$$
(y remains free, i.e., defined externally)

If we forget to rename the bound y:

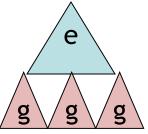
$$(\lambda x. (\lambda y. y x)) (y (\lambda x. x)) \rightarrow_{\beta}^{*} \lambda y. y (y (\lambda v. v))$$
(y was free before but *is bound now*)

Another View of Reduction

The application



• Becomes:



(terms can grow substantially through β -reduction!)

Normal Forms

- A term without redexes is in <u>normal form</u>
- A reduction sequence stops at a normal form

• If e is in normal form and $e \to_{\beta}^* f$ then e is identical to f

- $K = \lambda x$. λy . x is in normal form
- K I is not in normal form

Nondeterministic Evaluation

We define a small-step reduction relation

$$(\lambda x. e) f \rightarrow [f/x]e$$

$$\begin{array}{c} \mathsf{e_1} \to \mathsf{e_2} \\ \\ \mathsf{e_1} \ \mathsf{f} \to \mathsf{e_2} \ \mathsf{f} \end{array}$$

$$\frac{\mathsf{f_1} \to \mathsf{f_2}}{\mathsf{e} \; \mathsf{f_1} \to \mathsf{e} \; \mathsf{f_2}}$$

$$e \rightarrow f$$

$$\lambda x. e \rightarrow \lambda x. f$$

- This is a non-deterministic semantics
- Note that we evaluate under λ (where?)

Lambda Calculus Contexts

- Define contexts with one hole
- H ::= | λ x. H | H e | e H
- Write H[e] to denote the filling of the hole in H with the expression e
- Example:

$$H = \lambda x. x \bullet H[\lambda y. y] = \lambda x. x (\lambda y. y)$$

Filling the hole allows variable capture!

$$H = \lambda x. x \bullet H[x] = \lambda x. x x$$

Contextual Opsem

$$e \rightarrow f$$

$$(\lambda \ x. \ e) \ f \rightarrow [f/x]e \qquad H[e] \rightarrow H[f]$$

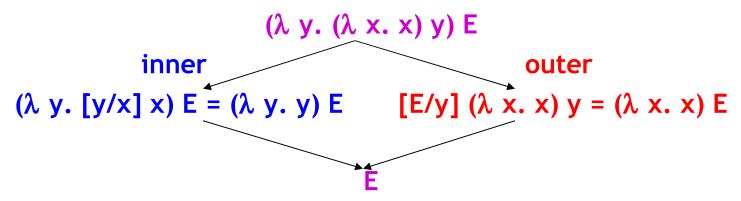
- Contexts allow concise formulations of <u>congruence</u> rules (application of local reduction rules on subterms)
- Reduction occurs at a β -redex that can be anywhere inside the expression
- The latter rule is called a <u>congruence</u> or structural rule
- The above rules to not specify which redex must be reduced first

The Order of Evaluation

• In a λ -term there could be more than one instance of (λ x. e) f, as in:

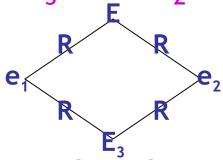
$$(\lambda y. (\lambda x. x) y) E$$

- Could reduce the inner or outer λ
- Which one should we pick?



The Diamond Property

A relation R has the <u>diamond property</u> if whenever e R e₁ and e R e₂ then there exists e₃ such that e₁ R e₃ and e₂ R e₃



- \rightarrow_{β} does *not* have the diamond property
- \rightarrow_{β}^* has the diamond property
- Also called the <u>confluence property</u>

A Diamond In The Rough

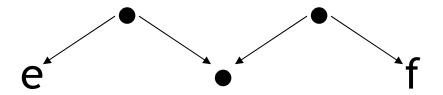
- Languages defined by non-deterministic sets of rules are common
 - Logic programming languages
 - Expert systems
 - Constraint satisfaction systems
 - And thus most pointer analyses ...
 - Dataflow systems
 - Makefiles
- It is useful to know whether such systems have the diamond property

(Beta) Equality

• Let $=_{\beta}$ be the reflexive, transitive and symmetric closure of \rightarrow_{β}

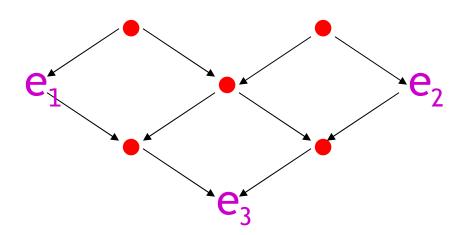
$$=_{\beta}$$
 is $(\rightarrow_{\beta} \cup \leftarrow_{\beta})^*$

• That is, $e =_{\beta} f$ if e converts to f via a sequence of forward and backward \rightarrow_{β}



The Church-Rosser Theorem

• If $e_1 =_{\beta} e_2$ then there exists e_3 such that $e_1 \rightarrow_{\beta}^*$ e_3 and $e_2 \rightarrow_{\beta}^* e_3$



 Proof (informal): apply the diamond property as many times as necessary

Corollaries

- If $e_1 = e_2$ and e_1 and e_2 are normal forms then e_1 is identical to e_2
 - From C-R we have $\exists e_3$. $e_1 \rightarrow_{\beta}^* e_3$ and $e_2 \rightarrow_{\beta}^* e_3$
 - Since e₁ and e₂ are normal forms they are identical to e₃

- If $e \to_{\beta}^* e_1$ and $e \to_{\beta}^* e_2$ and e_1 and e_2 are normal forms then e_1 is identical to e_2
 - "All terms have a unique normal form."

Evaluation Strategies

- Church-Rosser theorem says that independent of the reduction strategy we will find ≤ 1 normal form
- But some reduction strategies might find 0
- $(\lambda x. z) ((\underline{\lambda} y. y y) (\underline{\lambda} y. y y)) \rightarrow$ $(\lambda x. z) ((\underline{\lambda} y. y y) (\underline{\lambda} y. y y)) \rightarrow ...$
- $(\lambda x. z) ((\lambda y. yy) (\lambda y. yy)) \rightarrow z$
- There are three traditional strategies
 - normal order (never used, always works)
 - call-by-name (rarely used, cf. TeX)
 - call-by-value (amazingly popular)

Civilization: Call By Value

Normal Order

- Evaluates the left-most redex not contained in another redex
- If there is a normal form, this finds it
- Not used in practice: requires partially evaluating function pointers and looking "inside" functions
- Call-By-Name ("lazy")
 - Don't reduce under λ , don't evaluate a function argument (until you need to)
 - Does not always evaluate to a normal form
- <u>Call-By-Value</u> ("eager" or "strict")
 - Don't reduce under λ , do evaluate a function's argument right away
 - Finds normal forms less often than the other two

Endgame

- This time: λ syntax,
 semantics, reductions,
 equality, ...
- Next time: encodings, real prorams, type systems, and all the fun stuff!

Wisely done, Mr. Freeman. I will see you up ahead.

Homework

- Read Leroy article, think about axiomatic
- Homework 5 Due Later

Tricksy On The Board Answer

• Is this rule unsound?

• Nope: it's our basic rule plus 2x consequence

$$\vdash \{A \land p\} c_1 \{B\} \vdash \{A \land \neg p\} c_2 \{B\}$$

$$\vdash \{A\} \text{ if p then } c_1 \text{ else } c_2 \{B\}$$

$$\vdash A' \Rightarrow A \vdash \{A\} c \{B\} \vdash B \Rightarrow B'$$

$$\vdash \{A'\} c \{B'\}$$

• Note that $B_{then} \Rightarrow B_{then} \vee B_{else}$