
#1

Abstract InterpretationAbstract Interpretation

(Galois, Collections, Widening)(Galois, Collections, Widening)

#2

What Are We Doing?
• Sam Block Variable Renaming for Decompilation and Program Readability

• William Burns Surveying Malware's Relation to Programming Languages

• Tim Chaplin Generalizing the Burrows-Wheeler Transform

• Kirti Chawla Detection of Covert Channels in RFID Supply Chains

• Joel Coffman

• Derek Davis Classification of and Confidence in Repairs to Software Bugs

• Daniel Dougherty Branch Prediction in Dynamic Binary Translation Systems

• Zak Fry A Large-Scale Code Readability Metric

• Andrew Jurik Surveying The Use of Static Analyses to Verify Security Properties

• Dan Lepage A Bayesian Approach to SVBRDF Decomposition

• Ming Mao A Process Execution and Collaboration Policy Assertion Language

• Irwin Reyes The Accuracy of Face-Recognition Systems

• Arkaitz Ruiz Alvarez Verifying Programs that Use Intel's Threading Building Blocks Library

• Mona Sergi Improving Automatic Program Repair with Template-based Mutations

• Blake Sheridan Implementing Support for Hardware-based Profiling in Embedded Systems

• Michael Skalak Implementing and Interpreting Visual Languages

• Elizabeth Soechting Semantic Regression Testing for Tree-Structured Output

• Luther Tychonievich A Unified Compiler Representation to Support Debugging Optimized Code

• Kristen Walcott A Test Case Generation Technique for Multithreaded Programs

• Ren Xu Surveying Refinement Types

#3

Tool Time

• How’s Homework 5 going?
• Get started early
• Compilation problems?

– See FAQ
(trivia: what tool brand is this?)

#4

More Power!

• You can handle it!

#5

Abstract Interpretation

• We have an abstract domain A
– e.g., A = { positive, negative, zero }
– An abstraction function β : Z ! A

• Z is our concrete domain

– A concretization function γ : A ! P(Z)

• Positive + Positive = ???
• Positive + Negative = ???
• Positive / Zero = ???

#6

We don't want security to get suspicious ...

#7

#8

Review

• We introduced abstract interpretation
• An abstraction mapping from concrete to

abstract values
– Has a concretization mapping which forms a

Galois connection

• We’ll look a bit more at Galois connections
• We’ll lift AI from expressions to programs
• … and we’ll discuss the mythic “widening”

#9

Why Galois Connections?

• We have an abstract domain A
– An abstraction function β : Z ! A

– Induces α : P(Z) ! A and γ : A ! P(Z)

• We argued that for correctness
γ(a1 op a2) ¾ γ(a1) op γ(a2)

– We wish for the set on the left to be as small as possible
– To reduce the loss of information through abstraction

• For each set S µ C, define α(S) as follows:
– Pick smallest S’ that includes S and is in the image of γ
– Define α(S) = γ-1(S’)
– Then we define: a1 op a2 = α(γ(a1) op γ(a2))

• Then α and γ form a Galois connection

#10

Galois Connections
• A Galois connection between complete

lattices A and P(C) is a pair of functions α and
γ such that:
– γ and α are monotonic

• (with the µ ordering on P(C))

– α (γ (a)) = a for all a 2 A
– γ (α(S)) ¾ S for all S 2 P(C)

S

C

γ α
1

2 4

3
21 3 4

?

>

1,2

#11

More on Galois Connections

• All Galois
connections
are monotonic

• In a Galois
connection
one function
uniquely and
absolutely
determines
the other

#12

Abstract Interpretation for
Imperative Programs

• So far we abstracted the value of
expressions

• Now we want to abstract the state
at each point in the program

• First we define the concrete
semantics that we are abstracting
– We’ll use a collecting semantics

#13

Collecting Semantics

• Recall
– A state σ 2 Σ. Any state σ has type Var ! Z
– States vary from program point to program point

• We introduce a set of program points: labels
• We want to answer questions like:

– Is x always positive at label i?
– Is x always greater or equal to y at label j?

• To answer these questions we’ll construct
C 2 Contexts. C has type Labels ! P(Σ)

– For each label i, C(i) = all possible states at label i
– This is called the collecting semantics of the program
– This is basically what SLAM (and BLAST, ESP, …)

approximate (using BDDs to store P(Σ) efficiently)

#14

Defining the Collecting Semantics
• We first define relations between the collecting

semantics at different labels
– We do it for unstructured CFGs (cf. HW5!)
– Can do it for IMP with careful notion of program points

• Define a label on each edge in the CFG
• For assignment

 Cj = {σ[x := n] | σ 2 Ci Æ «e¬σ = n}x := e

i

j

#15

Defining the Collecting Semantics

• For conditionals

Celse = { σ | σ 2 Cin Æ «b¬σ = false}

Cthen = { σ | σ 2 Cin Æ «b¬σ = true}

• Assumes b has no side effects (as in IMP or HW5)

in

b truefalse

else then

#16

Defining the Collecting Semantics

• For a join

Cout = Ci [Cj

• Verify that these relations are monotonic
– If we increase a Cx all other Cy can only increase

i

out

j

#17

Collecting Semantics: Example
• Assume x ¸ 0 initially (explain this?)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}

#18

Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}

#19

Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
C3 = C2 Å {σ | σ(x) ≠ 0}

#20

Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
C3 = C2 Å {σ | σ(x) ≠ 0}
C4 = {σ[y:=σ(y)*σ(x)] |

σ 2 C3}

#21

Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
[{σ[x:=σ(x)-1] | σ2C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C4 = {σ[y:=σ(y)*σ(x)] |

σ 2 C3}

#22

Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
[{σ[x:=σ(x)-1] | σ2C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C4 = {σ[y:=σ(y)*σ(x)] |

σ 2 C3}
C5 = C2 Å {σ | σ(x) = 0}

#23

Why Does This Work?
• We just made a system of recursive equations

that are defined largely in terms of
themselves
– e.g., C2 = F(C4), C4 = G(C3), C3 = H(C2)

• Why do we have any reason to believe that
this will get us what we want?

#24

The Collecting Semantics
• We have an equation with the unknown C

– The equation is defined by a monotonic and
continuous function on domain Labels ! P(Σ)

• We can use the least fixed-point theorem
– Start with C0(L)=; (aka C0 = λL.;)

– Apply the relations between Ci and Cj to get C1
i

from C0
j

– Stop when all Ck = Ck-1

– Problem: we’ll go on forever for most programs
– But we know the fixed point exists

#25

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

;

;

;

;

;

;

#26

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

;

;

;

;

;

#27

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1}

;

;

;

;

#28

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1}

{x=0,y=1}

;

;

{x>0,y=1}

#29

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1}

{x=0,y=1}

{x>0,y=x}

;

{x>0,y=1}

#30

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1}

{x=0,y=1}

{x>0,y=x}

{x¸ 0, y=x+1}

{x>0,y=1}

#31

Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1 Ç y = x + 1}

{x=0,y=1}

{x>0,y=x}

{x¸ 0, y=x+1}

{x>0,y=1}

Q: Theatre (006 / 842)

• Name the 1879 Gilbert & Sullivan
operetta parodied by the following
quote:
– I am the very model of a Newsgroup

personality.
– I intersperse obscenity with tedious

banality.
– Addresses I have plenty of, both genuine

and ghosted too,
– On all the countless newsgroups that my

drivel is cross-posted to.

Q: Movies (387 / 842)

•Name the movie quoted below
and also name either character
or either character's actor. In
this 1987 Mel Brooks spoof, one
character is revealed to be
another character's "father's
brother's nephew's cousin's
former roommate."

Q: TV Music (040 / 842)

•Fill in the three blanks in this
Flintstones theme song snippet:
– Let's ride with the family down the
street

– Through the courtesy of blank
blank blank

– When you're with the Flintstones
– Have a yabba dabba doo time

#35

Abstract Interpretation

• Pick a complete lattice A (abstractions for P(Σ))
– Along with a monotonic abstraction α : P(Σ) ! A

– Alternatively, pick β : Σ ! A

– This uniquely defines its Galois connection γ

• Take the relations between Ci and move them to the
abstract domain:

a : Label ! A

• Assignment

 Concrete: Cj = {σ[x := n] | σ 2 Ci Æ «e¬σ = n}

 Abstract: aj = α {σ[x := n] | σ 2 γ(ai) Æ «e¬σ = n}

#36

Abstract Interpretation

• Conditional

 Concrete: Cj = { σ | σ 2 Ci Æ «b¬σ = false} and

 Ck = { σ | σ 2 Ci Æ «b¬σ = true}

 Abstract: aj = α { σ | σ 2 γ(ai) Æ «b¬σ = false} and

 ak = α { σ | σ 2 γ(ai) Æ «b¬σ = true}

• Join
 Concrete: Ck = Ci [Cj

 Abstract: ak = α (γ(ai) [γ(aj)) = lub {ai, aj}

#37

Least Fixed Points
In The Abstract Domain

• We have a recursive equation with unknown “a”
– Defined by a monotonic and continuous function on the

domain Labels ! A

• We can use the least fixed-point theorem:
– Start with a0 = λL.? (aka: a0(L) = ?)
– Apply the monotonic function to compute ak+1 from ak

– Stop when ak+1 = ak

• Exactly the same computation as for the collecting
semantics
– What is new?
– “There is nothing new under the sun but there are lots

of old things we don't know.” – Ambrose Bierce

#38

Least Fixed Points
In The Abstract Domain

• We have a hope of termination!
• Classic setup: A has only uninteresting chains (finite

number of elements in each chain)
– A has finite height h (= “finite-height lattice”)

• The computation takes O(h £ |Labels|2) steps
– At each step “a” makes progress on at least one label
– We can only make progress h times
– And each time we must compute |Labels| elements

• This is a quadratic analysis: good news
– This is exactly the same as Kildall’s 1973 analysis of

dataflow’s polynomial termination given a finite-height
lattice and monotonic transfer functions.

#39

Abstract Interpretation: Example
• Consider the following program, x>0

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5F T

We want to do the
sign analysis on it.

#40

Abstract Domain for Sign Analysis

• Invent the complete sign lattice
S = { ?, -, 0, +, > }

• Construct the complete lattice
A = {x, y} ! S

– With the usual point-wise ordering
– Abstract state gives the sign for x and y

• We start with a0 = λL.λv2{x,y}.?
– aka: a0(L,v) = ?

#41

Let’s Do It!

>>+?y

00?x5

>>+?y

>>+?x4

>>+?y

>>+?x3

>>+?y

>>+?x2

>>y

++x1

Iterations !Label

#42

Notes, Weaknesses, Solutions
• We abstracted the state of each variable

independently
A = {x, y } ! {?, -, 0, +, > }

• We lost relationships between variables
– e.g., at a point x and y may always have the same

sign
– In the previous abstraction we get {x := >, y := >}

at label 2 (when in fact y is always positive!)

• We can also abstract the state as a whole
A = P({?, -, 0, +, >} £ {?, -, 0, +, >})

#43

Other Abstract Domains
• Range analysis

– Lattice of ranges: R ={ ?, [n..m], (-1, m], [n, +1), > }
– It is a complete lattice

• [n..m] t [n’..m’] = [min(n, n’)..max(m,m’)]
• [n..m] u [n’..m’] = [max(n, n’)..min(m, m’)]
• With appropriate care in dealing with 1

– β : Z ! R such that β(n) = [n..n]

– α : P(Z) ! R such that α(S) = lub {β(n) | n 2 S} =
[min(S)..max(S)]

– γ : R ! P(Z) such that γ(r) = { n | n 2 r }

• This lattice has infinite-height chains
– So the abstract interpretation might not terminate!

#44

Example of Non-Termination

• Consider this (common) program fragment

z := 1

z · n

z := z + 1

1

2

3 4
T F

We want to do range
analysis on it.

#45

Example of Non-Termination

• Consider the sequence of abstract states at point 2
– [1..1], [1..2], [1..3], …
– The analysis never terminates
– Or terminates very late if the loop bound is known

statically

• It is time to approximate even more: widening
• We redefine the join (lub) operator of the lattice to

ensure that from [1..1] upon union with [2..2] the
result is [1..+1) and not [1..2]

• Now the sequence of states is
– [1..1], [1, +1), [1, +1) Done (no more infinite chains)

#46

Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)

• A widening 5 : (P £ P) ! P on a poset hP,vi
satisfies:
– 8 x, y 2 P . x v (x 5 y) Æ y v (x 5 y)
– For all increasing chains x0 v x1 v … the increasing chain

y0 =def x0, …, yn+1 =def yn 5 xn+1, … is not strictly increasing.

• Two different main uses:
– Approximate missing lubs. (Not for us.)
– Convergence acceleration. (This is the real use.)

• A widening operator can be used to effectively compute an upper
approximation of the least fixpoint of F 2 L 5 L starting from
below when L is computer-representable but does not satisfy the
ascending chain condition.

#47

Formal Widening Example
[1,1]5[1,2] = [1,+1)

• Range Analysis on z:
L0: z := 1 ;
L1: while z<99 do
L2: z := z+1
L3: done /* z ¸ 99 */

L4:

yL4
0 = [99,+1)xL4

0 = [99,+1)

yL3
1 = [2,+1)xL3

1 = [2,+1)

yL2
1 = [1,+1)xL2

1 = [1,2]

yL3
0 = [2,2]xL3

0 = [2,2]

yL1
0 = [1,1]xL1

0 = [1,1]

stable (fewer than 99 iterations!)

yL2
0 = [1,1]xL2

0 = [1,1]

yL0
0 = ?xL0

0 = ?

Widened yiOriginal xi

xLi
j =def the jth iterative attempt

to compute an abstract value for
z at label Li

Recall lub S = [min(S)..max(S)]
lub {[2,+1),[1,+1)} = {[1,+1)}

#48

Other Abstract Domains

• Linear relationships between variables
– A convex polyhedron is a subset of Zk whose elements

satisfy a number of inequalities:
a1x1 + a2x2 + … + akxk ¸ ci

– This is a complete lattice; linear programming methods
compute lubs

• Linear relationships with at most two variables
– Convex polyhedra but with · 2 variables per constraint

– Octagons (x + y ¸ c) have efficient algorithms

• Modulus constraints (e.g. even and odd)

#49

Abstract Chatter
• AI, Dataflow and Software Model Checking

– The big three (aside from flow-insensitive type systems)
for program analyses

• Are in fact quite related:
– David Schmidt. Data flow analysis is model checking of

abstract interpretation. POPL ’98.

• AI is usually flow-sensitive (per-label answer)
• AI can be path-sensitive (if your abstract domain

includes Ç, for example), which is just where model
checking uses BDD’s

• Metal, SLAM, ESP, … can all be viewed as AI

#50

Abstract Interpretation
Conclusions

• AI is a very powerful technique that underlies a
large number of program analyses

• AI can also be applied to functional and logic
programming languages

• There are a few success stories
– Strictness analysis for lazy functional languages
– PolySpace for linear constraints

• In most other cases however AI is still slow
• When the lattices have infinite height and widening

heuristics are used the result becomes unpredictable

