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What Are We Doing?
• Sam Block Variable Renaming for Decompilation and Program Readability

• William Burns Surveying Malware's Relation to Programming Languages

• Tim Chaplin Generalizing the Burrows-Wheeler Transform

• Kirti Chawla Detection of Covert Channels in RFID Supply Chains

• Joel Coffman

• Derek Davis Classification of and Confidence in Repairs to Software Bugs

• Daniel Dougherty Branch Prediction in Dynamic Binary Translation Systems

• Zak Fry A Large-Scale Code Readability Metric

• Andrew Jurik Surveying The Use of Static Analyses to Verify Security Properties

• Dan Lepage A Bayesian Approach to SVBRDF Decomposition

• Ming Mao A Process Execution and Collaboration Policy Assertion Language

• Irwin Reyes The Accuracy of Face-Recognition Systems

• Arkaitz Ruiz Alvarez Verifying Programs that Use Intel's Threading Building Blocks Library

• Mona Sergi Improving Automatic Program Repair with Template-based Mutations

• Blake Sheridan Implementing Support for Hardware-based Profiling in Embedded Systems

• Michael Skalak Implementing and Interpreting Visual Languages 

• Elizabeth Soechting Semantic Regression Testing for Tree-Structured Output

• Luther Tychonievich A Unified Compiler Representation to Support Debugging Optimized Code 

• Kristen Walcott A Test Case Generation Technique for Multithreaded Programs

• Ren Xu Surveying Refinement Types
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Tool Time

• How’s Homework 5 going?
• Get started early
• Compilation problems?

– See FAQ
(trivia: what tool brand is this?)
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More Power!

• You can handle it!
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Abstract Interpretation

• We have an abstract domain A 
– e.g., A = { positive, negative, zero } 
– An abstraction function β : Z ! A

• Z is our concrete domain

– A concretization function γ : A ! P(Z)

• Positive + Positive = ???
• Positive + Negative = ???
• Positive / Zero = ???
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We don't want security to get suspicious ...
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Review

• We introduced abstract interpretation
• An abstraction mapping from concrete to 

abstract values
– Has a concretization mapping which forms a 

Galois connection 

• We’ll look a bit more at Galois connections
• We’ll lift AI from expressions to programs
• … and we’ll discuss the mythic “widening”
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Why Galois Connections?

• We have an abstract domain A
– An abstraction function β : Z ! A

– Induces α : P(Z) ! A and γ : A ! P(Z)

• We argued that for correctness
γ(a1 op a2) ¾ γ(a1) op γ(a2)

– We wish for the set on the left to be as small as possible
– To reduce the loss of information through abstraction

• For each set S µ C, define α(S) as follows:
– Pick smallest S’ that includes S and is in the image of γ
– Define α(S) = γ-1(S’)
– Then we define: a1 op a2 = α(γ(a1) op γ(a2))

• Then α and γ form a Galois connection
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Galois Connections
• A Galois connection between complete 

lattices A and P(C) is a pair of functions α and 
γ such that:
–  γ and α are monotonic 

• (with the µ ordering on P(C))  

–  α (γ (a)) = a for all a 2 A
–  γ (α(S)) ¾ S for all S 2 P(C)

S

C

γ α
1

2 4

3
21 3 4

?

>

1,2
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More on Galois Connections

• All Galois 
connections 
are monotonic

• In a Galois 
connection 
one function 
uniquely and 
absolutely 
determines 
the other 
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Abstract Interpretation for 
Imperative Programs

• So far we abstracted the value of 
expressions

• Now we want to abstract the state 
at each point in the program

• First we define the concrete 
semantics that we are abstracting
– We’ll use a collecting semantics
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Collecting Semantics

• Recall
– A state σ 2 Σ. Any state σ has type Var ! Z
– States vary from program point to program point

• We introduce a set of program points: labels
• We want to answer questions like:

– Is x always positive at label i?
– Is x always greater or equal to y at label j?

• To answer these questions we’ll construct
C 2 Contexts. C has type Labels ! P(Σ)

– For each label i, C(i) = all possible states at label i
– This is called the collecting semantics of the program
– This is basically what SLAM (and BLAST, ESP, …) 

approximate (using BDDs to store P(Σ) efficiently)
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Defining the Collecting Semantics
• We first define relations between the collecting 

semantics at different labels
– We do it for unstructured CFGs (cf. HW5!) 
– Can do it for IMP with careful notion of program points

• Define a label on each edge in the CFG
• For assignment

                      Cj = {σ[x := n] | σ 2 Ci Æ «e¬σ = n}x := e

i

j
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Defining the Collecting Semantics

• For conditionals

Celse = { σ | σ 2 Cin Æ «b¬σ = false}

Cthen = { σ | σ 2 Cin Æ «b¬σ = true}

• Assumes b has no side effects (as in IMP or HW5)

in

b truefalse

else then
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Defining the Collecting Semantics

• For a join

Cout = Ci [ Cj

• Verify that these relations are monotonic
– If we increase a Cx all other Cy can only increase

i

out

j
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Collecting Semantics: Example
• Assume x ¸ 0 initially (explain this?)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
C3 = C2 Å {σ | σ(x) ≠ 0}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
C3 = C2 Å {σ | σ(x) ≠ 0}
C4 = {σ[y:=σ(y)*σ(x)] | 

σ 2 C3}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
[ {σ[x:=σ(x)-1] | σ2C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C4 = {σ[y:=σ(y)*σ(x)] | 

σ 2 C3}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
[ {σ[x:=σ(x)-1] | σ2C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C4 = {σ[y:=σ(y)*σ(x)] | 

σ 2 C3}
C5 = C2 Å {σ | σ(x) = 0}
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Why Does This Work?
• We just made a system of recursive equations 

that are defined largely in terms of 
themselves
– e.g., C2 = F(C4), C4 = G(C3), C3 = H(C2)

• Why do we have any reason to believe that 
this will get us what we want?



#24

The Collecting Semantics
• We have an equation with the unknown C

– The equation is defined by a monotonic and 
continuous function on domain Labels ! P(Σ)

• We can use the least fixed-point theorem 
– Start with C0(L)=;      (aka C0 = λL.;)

– Apply the relations between Ci and Cj to get C1
i 

from C0
j

– Stop when all Ck = Ck-1

– Problem: we’ll go on forever for most programs
– But we know the fixed point exists
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

;

;

;

;

;

;
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

;

;

;

;

;
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1} 

;

;

;

;
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1} 

{x=0,y=1}

;

;

{x>0,y=1}
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1} 

{x=0,y=1}

{x>0,y=x}

;

{x>0,y=1}
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1} 

{x=0,y=1}

{x>0,y=x}

{x¸ 0, y=x+1}

{x>0,y=1}
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1 Ç y = x + 1} 

{x=0,y=1}

{x>0,y=x}

{x¸ 0, y=x+1}

{x>0,y=1}



Q:  Theatre  (006 / 842) 

• Name the 1879 Gilbert & Sullivan 
operetta parodied by the following 
quote: 
–  I am the very model of a Newsgroup 

personality. 
–  I intersperse obscenity with tedious 

banality. 
–  Addresses I have plenty of, both genuine 

and ghosted too, 
–  On all the countless newsgroups that my 

drivel is cross-posted to.  



Q:  Movies  (387 / 842) 

•Name the movie quoted below 
and also name either character 
or either character's actor. In 
this 1987 Mel Brooks spoof, one 
character is revealed to be 
another character's "father's 
brother's nephew's cousin's 
former roommate."  



Q:  TV Music  (040 / 842) 

•Fill in the three blanks in this 
Flintstones theme song snippet: 
–  Let's ride with the family down the 
street 

–  Through the courtesy of blank 
blank blank 

–  When you're with the Flintstones 
–  Have a yabba dabba doo time  
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Abstract Interpretation 

• Pick a complete lattice A (abstractions for P(Σ) )
– Along with a monotonic abstraction α : P(Σ) ! A

– Alternatively, pick β : Σ ! A

– This uniquely defines its Galois connection γ

• Take the relations between Ci and move them to the 
abstract domain:

a : Label ! A

• Assignment

      Concrete: Cj = {σ[x := n] | σ 2 Ci Æ «e¬σ = n}

      Abstract:  aj = α {σ[x := n] | σ 2 γ(ai) Æ «e¬σ = n}
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Abstract Interpretation

• Conditional

       Concrete: Cj = { σ | σ 2 Ci Æ «b¬σ = false} and  

                       Ck = { σ | σ 2 Ci Æ «b¬σ = true}

       Abstract: aj = α { σ | σ 2 γ(ai) Æ «b¬σ = false} and  

                      ak = α { σ | σ 2 γ(ai) Æ «b¬σ = true}

• Join
      Concrete: Ck = Ci [ Cj

      Abstract: ak = α (γ(ai) [ γ(aj)) = lub {ai, aj}
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Least Fixed Points 
In The Abstract Domain

• We have a recursive equation with unknown “a”
– Defined by a monotonic and continuous function on the 

domain Labels ! A

• We can use the least fixed-point theorem:
– Start with a0 = λL.?       (aka: a0(L) = ?)
– Apply the monotonic function to compute ak+1 from ak

– Stop when ak+1 = ak

• Exactly the same computation as for the collecting 
semantics
– What is new?
– “There is nothing new under the sun but there are lots 

of old things we don't know.” – Ambrose Bierce 
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Least Fixed Points 
In The Abstract Domain

• We have a hope of termination!
• Classic setup: A has only uninteresting chains (finite 

number of elements in each chain)
– A has finite height h (= “finite-height lattice”)

• The computation takes O(h £ |Labels|2) steps
– At each step “a” makes progress on at least one label
– We can only make progress h times 
– And each time we must compute |Labels| elements

• This is a quadratic analysis: good news
– This is exactly the same as Kildall’s 1973 analysis of 

dataflow’s polynomial termination given a finite-height 
lattice and monotonic transfer functions. 
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Abstract Interpretation: Example
• Consider the following program, x>0

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5F T

We want to do the
sign analysis on it.
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Abstract Domain for Sign Analysis

• Invent the complete sign lattice 
S = { ?, -, 0, +, > }

• Construct the complete lattice 
A = {x, y} ! S

– With the usual point-wise ordering
– Abstract state gives the sign for x and y

• We start with a0 = λL.λv2{x,y}.?
– aka: a0(L,v) = ?
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Let’s Do It!

>>+?y

00?x5

>>+?y

>>+?x4

>>+?y

>>+?x3

>>+?y

>>+?x2

>>y

++x1

Iterations !Label
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Notes, Weaknesses, Solutions
• We abstracted the state of each variable 

independently
A = {x, y } ! {?, -, 0, +, > }

• We lost relationships between variables
– e.g., at a point x and y may always have the same 

sign
– In the previous abstraction we get {x := >, y := >} 

at label 2 (when in fact y is always positive!)

• We can also abstract the state as a whole
A = P({?, -, 0, +, >} £ {?, -, 0, +, >})
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Other Abstract Domains
• Range analysis

– Lattice of ranges: R ={ ?, [n..m], (-1, m], [n, +1), > }
– It is a complete lattice

• [n..m] t [n’..m’] = [min(n, n’)..max(m,m’)]
• [n..m] u [n’..m’] = [max(n, n’)..min(m, m’)]
• With appropriate care in dealing with 1

–  β : Z ! R such that β(n) = [n..n]

–  α : P(Z) ! R such that α(S) = lub {β(n) | n 2 S} = 
[min(S)..max(S)]

–  γ : R ! P(Z) such that γ(r) = { n | n 2 r }

• This lattice has infinite-height chains
– So the abstract interpretation might not terminate!
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Example of Non-Termination

• Consider this (common) program fragment

z := 1

z · n

z := z + 1

1

2

3 4
T F

We want to do range 
analysis on it.
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Example of Non-Termination

• Consider the sequence of abstract states at point 2
– [1..1], [1..2], [1..3], …
– The analysis never terminates
– Or terminates very late if the loop bound is known 

statically

• It is time to approximate even more: widening
• We redefine the join (lub) operator of the lattice to 

ensure that from [1..1] upon union with [2..2] the 
result is [1..+1) and not [1..2]

• Now the sequence of states is
– [1..1], [1, +1), [1, +1)  Done (no more infinite chains)
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Formal Definition of Widening 
(Cousot 16.399 “Abstract Interpretation”, 2005)

• A widening 5 : (P £ P) ! P on a poset hP,vi 
satisfies:
– 8 x, y 2 P .   x v (x 5 y)   Æ   y v (x 5 y)
– For all increasing chains x0 v x1 v … the increasing chain 

y0 =def x0, …, yn+1 =def yn 5 xn+1, … is not strictly increasing.

• Two different main uses:
– Approximate missing lubs.  (Not for us.) 
– Convergence acceleration.  (This is the real use.) 

• A widening operator can be used to effectively compute an upper 
approximation of the least fixpoint of F 2 L 5 L starting from 
below when L is computer-representable but does not satisfy the 
ascending chain condition. 
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Formal Widening Example 
[1,1]5[1,2] = [1,+1)

• Range Analysis on z:
L0:  z := 1 ;
L1:  while z<99 do
L2: z := z+1
L3:  done /* z ¸ 99 */

L4:     

yL4
0 = [99,+1)xL4

0 = [99,+1)

yL3
1 = [2,+1)xL3

1 = [2,+1)

yL2
1 = [1,+1)xL2

1 = [1,2]

yL3
0 = [2,2]xL3

0 = [2,2]

yL1
0 = [1,1]xL1

0 = [1,1]

stable (fewer than 99 iterations!)

yL2
0 = [1,1]xL2

0 = [1,1]

yL0
0 = ?xL0

0 = ?

Widened yiOriginal xi

xLi
j =def the jth iterative attempt 

to compute an abstract value for 
z at label Li

Recall lub S = [min(S)..max(S)]
lub {[2,+1),[1,+1)} = {[1,+1)}
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Other Abstract Domains

• Linear relationships between variables
– A convex polyhedron is a subset of Zk whose elements 

satisfy a number of inequalities: 
a1x1 + a2x2 + … + akxk ¸ ci

– This is a complete lattice; linear programming methods 
compute lubs

• Linear relationships with at most two variables
– Convex polyhedra but with · 2 variables per constraint

– Octagons (x + y ¸ c) have efficient algorithms

• Modulus constraints (e.g. even and odd)
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Abstract Chatter
• AI, Dataflow and Software Model Checking

– The big three (aside from flow-insensitive type systems) 
for program analyses

• Are in fact quite related:
– David Schmidt. Data flow analysis is model checking of 

abstract interpretation. POPL ’98. 

• AI is usually flow-sensitive (per-label answer)
• AI can be path-sensitive (if your abstract domain 

includes Ç, for example), which is just where model 
checking uses BDD’s

• Metal, SLAM, ESP, … can all be viewed as AI
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Abstract Interpretation 
Conclusions

• AI is a very powerful technique that underlies a 
large number of program analyses

• AI can also be applied to functional and logic 
programming languages

• There are a few success stories
– Strictness analysis for lazy functional languages
– PolySpace for linear constraints

• In most other cases however AI is still slow
• When the lattices have infinite height and widening 

heuristics are used the result becomes unpredictable 


