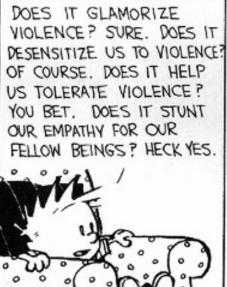
Abstract Interpretation (Non-Standard Semantics)

a.k.a. "Picking The Right Abstraction"



Apologies to Ralph Macchio

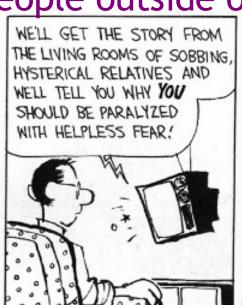
- Daniel: You're supposed to teach and I'm supposed to learn. Four homeworks I've been working on IMP, I haven't learned a thing.
- Miyagi: You learn plenty.
- Daniel: I learn plenty, yeah. I learned how to analyze IMP, maybe. I evaluate your commands, derive your judgments, prove your soundness. I learn plenty!
- Miyagi: Not everything is as seems.
- Daniel: You're not even relatively complete! I'm going home, man.
- Miyagi: Daniel-san!
- Daniel: What?
- Miyagi: Come here. Show me "compute the VC".

Why analyze programs statically?

MS Patch Tuesday - Plus ca change

• "eEye Digital Security has reported a vulnerability in Windows Media Player ... due to a boundary error within the processing of bitmap files (.bmp) and can be exploited to cause a heap-based buffer overflow via a specially crafted bitmap file that declares its size as 0 ... exploitation allows execution of arbitrary code"

 Six of seven "critical" or "important" bugs were found by people outside of Microsoft



The Problem

- It is extremely useful to predict program behavior statically (= without running the program)
 - For optimizing compilers, program analyses, software engineering tools, finding security flaws, etc.
- The semantics we studied so far give us the precise behavior of a program
- However, precise static predictions are impossible
 - The exact semantics is not computable
- We must settle for approximate, but correct, static analyses (e.g. VC vs. WP)

The Plan

- We will introduce abstract interpretation by example
- Starting with a miniscule language we will build up to a fairly realistic application
- Along the way we will see most of the ideas and difficulties that arise in a big class of applications

A Tiny Language

 Consider the following language of arithmetic ("shrIMP"?)

$$e ::= n | e_1 * e_2$$

The denotational semantics of this language

$$[n] = n$$

 $[e_1 * e_2] = [e_1] \times [e_2]$

- We'll take deno-sem as the "ground truth"
- For this language the precise semantics is computable (but in general it's not)

An Abstraction

- Assume that we are interested not in the value of the expression, but only in its sign:
 - positive (+), negative (-), or zero (0)
- We can define an <u>abstract semantics</u> that computes <u>only</u> the sign of the result

$$σ$$
: Exp → {-, 0, +}

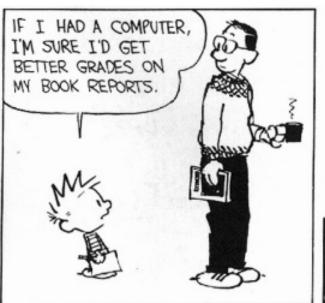
$$\sigma(n) = sign(n)$$

 $\sigma(e_1 * e_2) = \sigma(e_1) \otimes \sigma(e_2)$

\otimes	-	0	+
•	+	0	
0	0	0	0
+	-	0	+

I Saw the Sign

- Why did we want to compute the sign of an expression?
 - One reason: no one will believe you know abstract interpretation if you haven't seen the sign thing
- What could we be computing instead?
 - Alex Aiken was here ...



Correctness of Sign Abstraction

 We can show that the abstraction is correct in the sense that it predicts the sign

$$[e] > 0 \Leftrightarrow \sigma(e) = +$$

 $[e] = 0 \Leftrightarrow \sigma(e) = 0$
 $[e] < 0 \Leftrightarrow \sigma(e) = -$

- Our semantics is abstract but precise
- Proof is by structural induction on the expression e
 - Each case repeats similar reasoning

Another View of Soundness

Link each concrete value to an abstract one:

$$\beta: \mathbb{Z} \rightarrow \{ -, 0, + \}$$

- This is called the <u>abstraction function</u> (β)
 - This three-element set is the abstract domain
- Also define the concretization function (γ):

$$\gamma : \{-, 0, +\} \to \mathcal{P}(\mathbb{Z})$$
 $\gamma(+) = \{ n \in \mathbb{Z} \mid n > 0 \}$
 $\gamma(0) = \{ 0 \}$
 $\gamma(-) = \{ n \in \mathbb{Z} \mid n < 0 \}$

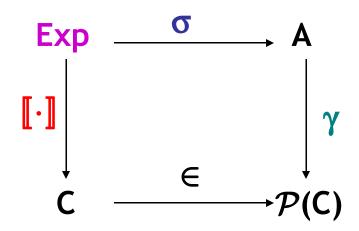
Another View of Soundness 2

Soundness can be stated succinctly

$$\forall e \in Exp. [e] \in \gamma(\sigma(e))$$

(the real value of the expression is among the concrete values represented by the abstract value of the expression)

- Let C be the concrete domain (e.g. \mathbb{Z}) and A be the abstract domain (e.g. $\{-, 0, +\}$)
- Commutative diagram:



Another View of Soundness 3

• Consider the generic abstraction of an operator $\sigma(e_1 \text{ op } e_2) = \sigma(e_1) \text{ op } \sigma(e_2)$

This is sound iff

$$\forall a_1 \forall a_2. \ \gamma(a_1 \ \underline{op} \ a_2) \supseteq \{n_1 \ op \ n_2 \mid n_1 \in \gamma(a_1), \ n_2 \in \gamma(a_2)\}$$

- e.g. $\gamma(a_1 \otimes a_2) \supseteq \{ n_1 * n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \}$
- This reduces the proof of correctness to one proof for each operator

Abstract Interpretation

- This is our first example of an <u>abstract</u> <u>interpretation</u>
- We carry out computation in an abstract domain
- The abstract semantics is a sound approximation of the standard semantics
- The concretization and abstraction functions establish the connection between the two domains

Adding Unary Minus and Addition

We extend the language to

$$e ::= n | e_1 * e_2 | - e$$

• We define $\sigma(-e) = -\sigma(e)$

	-	0	+
\ominus	+	0	-

Now we add addition:

$$e := n | e_1 * e_2 | - e | e_1 + e_2$$

• We define $\sigma(e_1 + e_2) = \sigma(e_1) \oplus \sigma(e_2)$

\oplus	•	0	+
-	-	-	••
0	-	0	+

Adding Addition

- The sign values are not closed under addition
- What should be the value of " $+ \oplus -$ "?
- Start from the soundness condition:

$$\gamma(+\oplus -) \supseteq \{ n_1 + n_2 \mid n_1 > 0, n_2 < 0 \} = \mathbb{Z}$$

• We don't have an abstract value whose concretization includes \mathbb{Z} , so we add one:

\oplus	-	0	+	T
-	-	-	T	T
0	-	0	+	T
+	T	+	+	T
T	$\mid \top \mid$	T	T	T

Loss of Precision

Abstract computation may lose information:

$$[[(1 + 2) + -3]] = 0$$
but: $\sigma((1+2) + -3) =$

$$(\sigma(1) \oplus \sigma(2)) \oplus \sigma(-3) =$$

$$(+ \oplus +) \oplus - = \top$$

- We lost some precision
- But this will simplify the computation of the abstract answer in cases when the precise answer is not computable

Adding Division

- Straightforward except for division by 0
 - We say that there is no answer in that case

$$- \gamma(+ \oslash 0) = \{ n \mid n = n_1 / 0, n_1 > 0 \} = \emptyset$$

- Introduce

 L to be the abstraction of the Ø
 - We also use the same abstraction for non-termination!

 - T = "something unknown"

					•
\Diamond	ı	0	+	T	
-	+	0	-	T	
0	丄	\perp	\perp	\perp	丄
+	-	0	+	T	\perp
T	T	T	T	T	\perp
\perp	丄	\perp	\perp	\perp	上

Q: Books (750 / 842)

 This 1962 Newbery Medalwinning novel by Madeleine L'Engle includes Charles Wallace, Mrs. Who, Mrs. Whatsit, Mrs. Which and the space-bending Tesseract.

Q: Events (596 / 842)

- Fill in the blanks of this 1993 joke with the name of the Prime Minister of the United Kingdom:
 - The Bosnian peace talks continued in Geneva today. The only thing that Alija Izetbegovic, Radovan Karadzic and Slobodan Milosovic could agree on was that <u>blank blank</u> has a funny name.

Q: Movies (347 / 842)

 In this 1985 movie based on the autobiography by Isak Denesen, Maryl Streep wants more than a love affair with Robert Redford but he wants to retain his freedom and eventually dies in a plane crash. It won 7 oscars and was nominated for 4 more.

Q: General (456 / 842)

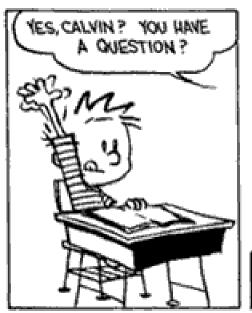
• In English, 6 of the 7 days of the week are named after Norse gods. Give two of those days and their associated gods.

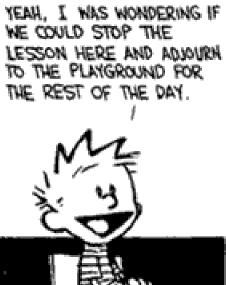
The Abstract Domain

- Our abstract domain forms a lattice
- A partial order is induced by γ

$$a_1 \leq a_2$$
 iff $\gamma(a_1) \subseteq \gamma(a_2)$

- We say that a₁ is more precise than a₂!
- Every <u>finite subset</u> has a least-upper bound (lub) and a greatest-lower bound (glb)





Lattice Facts

- A lattice is <u>complete</u> when every subset has a lub and a gub
 - Even infinite subsets!
- Every finite lattice is (trivially) complete
- Every complete lattice is a complete partial order (recall: denotational semantics!)
 - Since a chain is a subset
- Not every CPO is a complete lattice
 - Might not even be a lattice at all

Lattice History

- Early work in denotational semantics used lattices (instead of what?)
 - But only chains need to have lubs
 - And there was no need for ⊤ and glb

- In abstract interpretation we'll use ⊤ to denote "I don't know".
 - Corresponds to all values in the concrete domain

From One, Many

• We can start with the <u>abstraction function β </u>

$$\beta:\mathsf{C}\to\mathsf{A}$$

(maps a concrete value to the best abstract value)

- A must be a lattice
- We can derive the concretization function γ

$$\gamma : A \to \mathcal{P}(C)$$

 $\gamma(a) = \{ x \in C \mid \beta(x) \leq a \}$

• And the <u>abstraction for sets α </u>

$$\alpha : \mathcal{P}(C) \rightarrow A$$

 $\alpha(S) = \text{lub} \{ \beta(x) \mid x \in S \}$

Example

Consider our sign lattice

$$\beta(n) = \begin{cases} + & \text{if } n > 0 \\ 0 & \text{if } n = 0 \\ - & \text{if } n < 0 \end{cases}$$

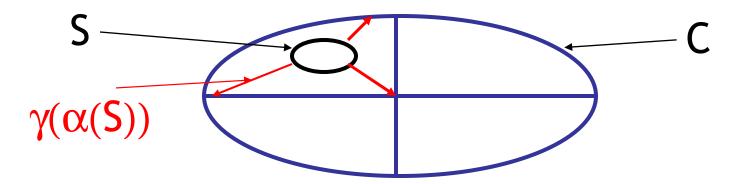
- $\alpha(S) = \text{lub} \{ \beta(x) \mid x \in S \}$
 - Example: α ({1, 2}) = lub { + } = +
 - α ({1, 0}) = lub { +, 0} = \top
 - α ({}) = lub \emptyset = \bot
- $\gamma(a) = \{ n \mid \beta(n) \leq a \}$
 - Example: γ (+) = { n | β (n) \leq +} =
 - $\{ n \mid \beta(n) = + \} = \{ n \mid n > 0 \}$

#27

- γ (T) = { n | β (n) \leq T} = \mathbb{Z}
- $\gamma (\bot) = \{ n \mid \beta(n) \leq \bot \} = \emptyset$

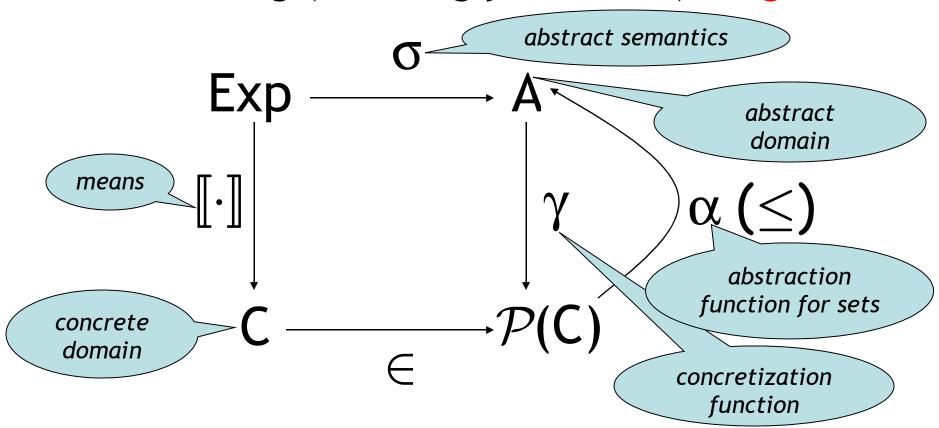
Galois Connections

- We can show that
 - γ and α are monotonic (with \subseteq ordering on $\mathcal{P}(C)$)
 - α (γ (a)) = a for all a \in A
 - $\gamma(\alpha(S)) \supseteq S$ for all $S \in \mathcal{P}(C)$
- Such a pair of functions is called a <u>Galois</u> connection
 - Between the lattices A and $\mathcal{P}(C)$



Correctness Condition

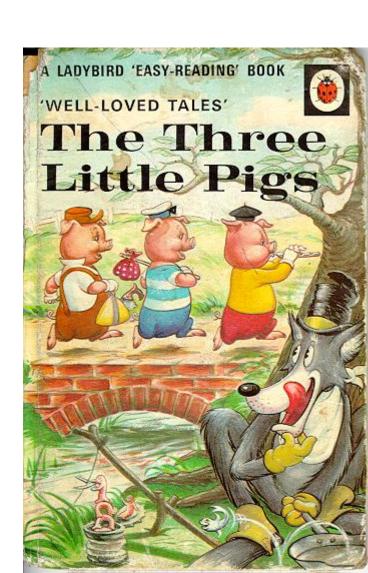
 In general, abstract interpretation satisfies the following (amazingly common) diagram



Three Little Correctness Conditions

- Three conditions define a correct abstract interpretation
- α and γ are monotonic
- α and γ form a Galois connection
 - = " α and γ are almost inverses"
- 4. Abstraction of operations is correct

$$a_1 \underline{op} a_2 = \alpha(\gamma(a_1) \underline{op} \gamma(a_2))$$



On The Board Questions

What is the VC for:

for
$$i = e_{low}$$
 to e_{high} do c done

This axiomatic rule is unsound. Why?

Homework

Read Ken Thompson Turing Award