
Axiomatic Semantics III

The Verification Crusade

Wei Hu Memorial Homework Award

Many turned in HW3 code:

```
let rec matches re s = match re with
```

| Star(r) -> union (singleton s)

(matches (Concat(r,Star(r))) s)

Which is a direct translation of:

$$R[r^*]s = \{s\} \cup R[rr^*]s$$

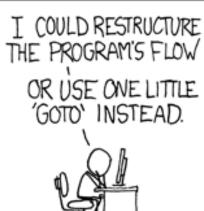
or, equivalently:

$$R[r^*]s = \{s\} \cup \{y \mid \exists x \in R[r]s \land y \in R[r^*]x \}$$

Why doesn't this work?

One-Slide Summary

- Verification Conditions make axiomatic semantics practical. We can compute verification conditions forward for use on unstructured code (= assembly language). This is sometimes called symbolic execution.
- We can add extra invariants or drop paths (dropping is unsound) to help verification condition generation scale.
- We can model exceptions, memory operations and data structures using verification condition generation.


Symbolic Execution

Where Are We?

- Axiomatic Semantics: the meaning of a program is what is true after it executes
- Hoare Triples: {A} c {B}
- Weakest Precondition: { WP(c,B) } c {B}
- Verification Condition: $A \Rightarrow VC(c,B) \Rightarrow WP(c,b)$
 - Requires Loop Invariants
 - Backward VC works for structured programs
 - Forward VC (Symbolic Exec) works for assembly
 - Here we are today ...

Today's Cunning Plan

- Symbolic Execution & Forward VCGen
- Handling Exponential Blowup
 - Invariants
 - Dropping Paths
- VCGen For Exceptions (double trouble)
- VCGen For Memory (McCarthyism)
- VCGen For Structures (have a field day)
- VCGen For "Dictator For Life"

VC and Invariants

Consider the Hoare triple:

$$\{x \le 0\}$$
 while_{I(x)} $x \le 5$ do $x := x + 1 \{x = 6\}$

The VC for this is:

$$x \le 0 \Rightarrow I(x) \land \forall x. (I(x) \Rightarrow (x > 5 \Rightarrow x = 6 \land x \le 5 \Rightarrow I(x+1)))$$

- Requirements on the invariant:
 - Holds on entry

$$\forall x. \ x \leq 0 \Rightarrow I(x)$$

- Preserved by the body
$$\forall x$$
. $I(x) \land x \le 5 \Rightarrow I(x+1)$

Useful

$$\forall x. \ \ I(x) \land x > 5 \Rightarrow x = 6$$

• Check that $I(x) = x \le 6$ satisfies all constraints

Forward VCGen

- Traditionally the VC is computed <u>backwards</u>
 - That's how we've been doing it in class
 - It works well for structured code
- But it can also be computed <u>forward</u>
 - Works even for un-structured languages (e.g., assembly language)
 - Uses symbolic execution, a technique that has broad applications in program analysis
 - e.g., the PREfix tool (Intrinsa, Microsoft) does this

Forward VC Gen Intuition

Consider the sequence of assignments

$$X_1 := e_1; X_2 := e_2$$

- The VC(c, B) = $[e_1/x_1]([e_2/x_2]B)$ = $[e_1/x_1, e_2[e_1/x_1]/x_2]B$
- We can compute the substitution in a forward way using <u>symbolic execution</u> (aka <u>symbolic evaluation</u>)
 - Keep a symbolic state that maps variables to expressions
 - Initially, $\Sigma_0 = \{ \}$
 - After $x_1 := e_1, \Sigma_1 = \{ x_1 \rightarrow e_1 \}$
 - After $x_2 := e_2$, $\Sigma_2 = \{x_1 \rightarrow e_1, x_2 \rightarrow e_2[e_1/x_1]\}$
 - Note that we have applied Σ_1 as a substitution to right-hand side of assignment $\mathbf{x}_2 := \mathbf{e}_2$

Simple Assembly Language

Consider the language of instructions:

- The "inv e" instruction is an annotation
 - Says that boolean expression e holds at that point
- Each function f() comes with Pre_f and Post_f annotations (<u>pre-</u> and <u>post-conditions</u>)
- New Notation (yay!): I_k is the instruction at address k

Symex States

We set up a symbolic execution state:

```
\Sigma: Var \rightarrow SymbolicExpressions
```

- $\Sigma(x)$ = the symbolic value of x in state Σ
- $\Sigma[x:=e]$ = a new state in which x's value is e
- We use states as substitutions:
- Σ (e) obtained from e by replacing x with Σ (x)
- Much like the opsem so far ...

Symex Invariants

- The symbolic executor tracks invariants passed
- A new part of symex state: Inv ⊆ {1...n}
- If $k \in Inv$ then I_k is an invariant instruction that we have already executed
- Basic idea: execute an inv instruction only twice:
 - The first time it is encountered
 - Once more time around an arbitrary iteration

Symex Rules

Define a VC function as an interpreter:

 $VC(L, \Sigma, Inv)$

VC : Address \times SymbolicState \times InvariantState \rightarrow Assertion

		K S
$VC(k, \Sigma, Inv) =$	$e \Rightarrow VC(L, \Sigma, Inv) \land \\ \neg e \Rightarrow VC(k+1, \Sigma, Inv)$	if I_k = if e goto L
	VC(k+1, Σ [x:= Σ (e)], Inv)	if $I_k = x := e$
	$\Sigma(Post_{current-function})$	if I _k = return
	$\Sigma(Pre_{f}) \wedge$	
	$\forall a_1a_m.\Sigma'(Post_f) \Rightarrow$	
	$VC(k+1, \Sigma', Inv)$	if I _k = f()
	(where $y_1,, y_m$ are modified by f)	
	and a ₁ ,, a _m are fresh parameters	
	and $\Sigma' = \Sigma[y_1 := a_1,, y_m := a_m]$	

if $I_k = goto L$

Symex Invariants (2a)

Two cases when seeing an invariant instruction:

- 1. We see the invariant for the first time
 - $I_k = inv e$
 - k ∉ Inv (= "not in the set of invariants we've seen")
 - Let $\{y_1, ..., y_m\}$ = the variables that could be modified on a path from the invariant back to itself
 - Let a₁, ..., a_m be fresh new symbolic parameters

$$\label{eq:continuous} \begin{split} VC(k,\,\Sigma,\,Inv) = \\ & \Sigma(e) \,\wedge\, \forall a_1...a_m.\,\, \Sigma'(e) \Rightarrow VC(k+1,\,\Sigma',\,Inv\,\cup\,\{k\}]) \\ \text{with } \Sigma' = \Sigma[y_1 := a_1,\,...,\,y_m := a_m] \end{split}$$

(like a function call)

Symex Invariants (2b)

- We see the invariant for the second time
 - $I_k = inv E$
 - $k \in Inv$

$$VC(k, \Sigma, Inv) = \Sigma(e)$$

(like a function return)

- Some tools take a more simplistic approach
 - Do not require invariants
 - Iterate through the loop a fixed number of times
 - PREfix, versions of ESC (DEC/Compaq/HP SRC)
 - Sacrifice completeness for usability

Symex Summary

- Let x_1 , ..., x_n be all the variables and a_1 , ..., a_n fresh parameters
- Let Σ_0 be the state $[x_1 := a_1, ..., x_n := a_n]$
- Let ∅ be the empty Inv set
- For all functions f in your program, prove:

$$\forall a_1...a_n. \ \Sigma_0(Pre_f) \Rightarrow VC(f_{entry}, \ \Sigma_0, \ \varnothing)$$

- If you start the program by invoking any f in a state that satisfies Pre_f, then the program will execute such that
 - At all "inv e" the e holds, and
 - If the function returns then Post_f holds
- Can be proved w.r.t. a real interpreter (operational semantics)
- Or via a proof technique called co-induction (or, assume-guarantee)

Forward VCGen Example

Consider the program

Precondition: $x \leq 0$

```
Loop: inv x \le 6

if x > 5 goto End

x := x + 1

goto Loop
```

End: return **Postcondition:** x = 6

Forward VCGen Example (2) ∀x.

```
x \le 0 \Rightarrow
x \le 6 \land
\forall x'.
(x' \le 6 \Rightarrow
x' > 5 \Rightarrow x' = 6
\land
x' \le 5 \Rightarrow x' + 1 \le 6
```

 VC contains both <u>proof obligations</u> and assumptions about the control flow

VCs Can Be Large

Consider the sequence of conditionals

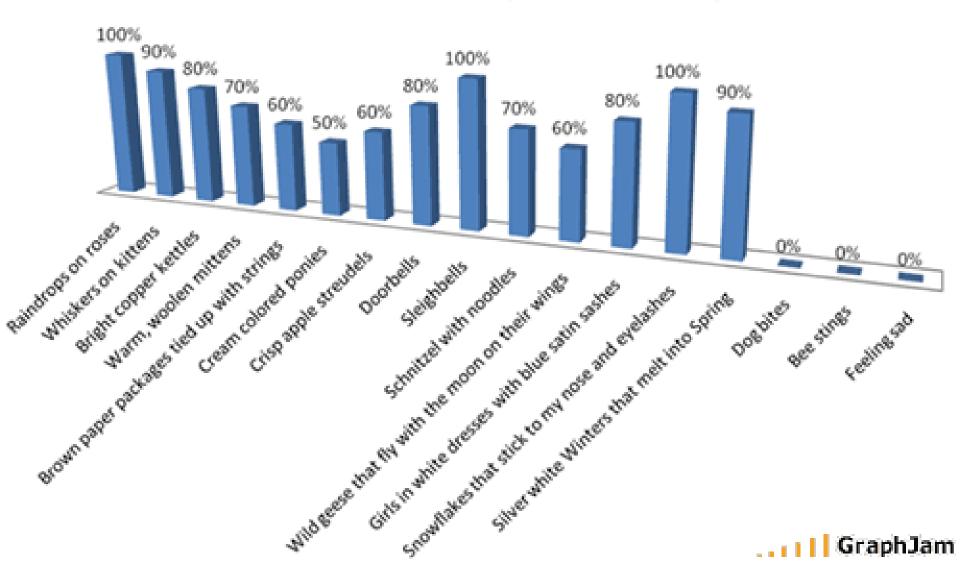
```
(if x < 0 then x := -x); (if x \le 3 then x += 3)
```

- With the postcondition P(x)
- The VC is

```
x < 0 \land -x \le 3 \implies P(-x + 3) \land x < 0 \land -x > 3 \implies P(-x) \land x \ge 0 \land x \le 3 \implies P(x + 3) \land x \ge 0 \land x > 3 \implies P(x)
```

- There is one conjunct for each path
 - ⇒ exponential number of paths!
 - Conjuncts for infeasible paths have un-satisfiable guards!
- Try with $P(x) = x \ge 3$

Q: Theatre (019 / 842)


 Name the composer or the title of the 1937 musical that includes the lyrics: "O Fortuna, velut luna statu variabilis, semper crescis aut decrescis; vita detestabilis nunc obdurat et tunc curat ludo mentis aciem, egestatem, potestatem dissolvit ut glaciem."

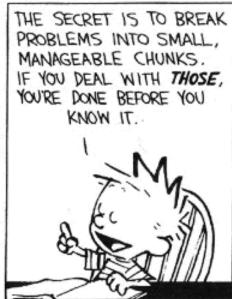
Q: Music (142 / 842)

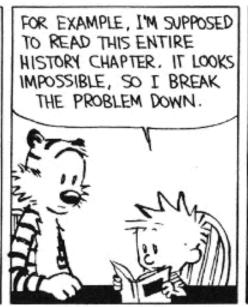
- Give the next line in 2 of the following 4 song lyrics:
 - "Hello darkness, my old friend"
 - "I'm gonna lay down my sword and shield"
 - "Make new friends but keep the old"
 - "Raindrops on roses and whiskers on kittens"

Answer Key?

These are few of my favorite things

English Prose


- 341. Van and Hitomi walked an inaudible distance from those guy's Van was hanging out with.
- 253. However, when he got into his chamber and sat down with a blank canvas propped up on its easel, his vision vanished as if it were nothing but a floating dust moat.
- 352. "Good evening my league." He picked her up by the wrist. "I think that you and I have some talking to do, actually I have a preposition"


- Q: Movie Music (437 / 842)
- This most common word in the 1991 Disney song Belle remains the same in the French localization of the movie.

VCs Can Be Exponential

- VCs are exponential in the size of the source because they attempt relative completeness:
 - Perhaps the correctness of the program must be argued independently for each path
- Unlikely that the programmer wrote a program by considering an exponential number of cases
 - But possible. Any examples? Any solutions?

VCs Can Be Exponential

- VCs are exponential in the size of the source because they attempt relative completeness:
 - Perhaps the correctness of the program must be argued independently for each path
- Standard Solutions:
 - Allow invariants even in straight-line code
 - And thus do not consider all paths independently!

Invariants in Straight-Line Code

- Purpose: modularize the verification task
- Add the command "after c establish Inv"
 - Same semantics as c (Inv is only for VC purposes)

$$VC(after c establish Inv, P) =_{def}$$

$$VC(c, Inv) \wedge \forall x_i. Inv \Rightarrow P$$

- where x_i are the ModifiedVars(c)
- Use when c contains many paths

```
after if x < 0 then x := -x establish x \ge 0; if x \le 3 then x += 3 { P(x) }
```

• VC is now:

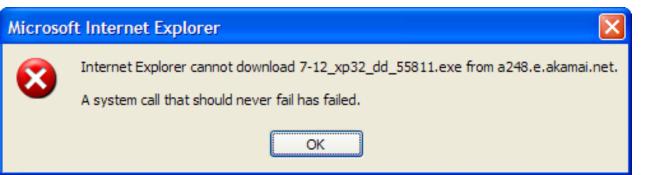
$$(x < 0 \Rightarrow -x \ge 0) \land (x \ge 0 \Rightarrow x \ge 0) \land$$

 $\forall x. \ x \ge 0 \Rightarrow (x \le 3 \Rightarrow P(x+3) \land x > 3 \Rightarrow P(x))$

Dropping Paths

- In absence of annotations, we can drop some paths
- VC(if E then c_1 else c_2 , P) = choose one of

```
- E \Rightarrow VC(c_1, P) \land \neg E \Rightarrow VC(c_2, P) (drop no paths)


- E \Rightarrow VC(c_1, P) (drops "else" path!)

\neg E \Rightarrow VC(c_2, P) (drops "then" path!)
```

- We sacrifice soundness! (we are now <u>unsound</u>)
 - No more guarantees
 - Possibly still a good debugging aid
- Remarks:
 - A recent trend is to sacrifice soundness to increase usability (e.g., Metal, ESP, even ESC)
 - The PREfix tool considers only 50 non-cyclic paths through a function (almost at random)

VCGen for Exceptions

- We extend the source language with exceptions without arguments (cf. HW2):
 - throw throws an exception
 - try c₁ catch c₂ executes c₂ if c₁ throws
- Problem:
 - We have non-local transfer of control
 - What is VC(throw, P)?

VCGen for Exceptions

- We extend the source language with exceptions without arguments (cf. HW2):
 - throw throws an exception
 - try c₁ catch c₂ executes c₂ if c₁ throws
- Problem:
 - We have non-local transfer of control
 - What is VC(throw, P)?
- Standard Solution: use 2 postconditions
 - One for <u>normal termination</u>
 - One for exceptional termination

VCGen for Exceptions (2)

- VC(c, P, Q) is a precondition that makes c either not terminate, or terminate normally with P or throw an exception with Q
- Rules

```
VC(skip, P, Q) = P
VC(c_1; c_2, P, Q) = VC(c_1, VC(c_2, P, Q), Q)
VC(throw, P, Q) = Q
VC(try c_1 catch c_2, P, Q) = VC(c_1, P, VC(c_2, P, Q))
VC(try c_1 finally c_2, P, Q) = ?
```

VCGen Finally

Given these:

```
VC(c_1; c_2, P, Q) = VC(c_1, VC(c_2, P, Q), Q)

VC(try c_1 catch c_2, P, Q) = VC(c_1, P, VC(c_2, P, Q))
```

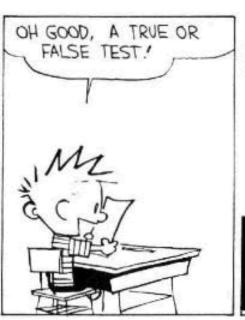
Finally is somewhat like "if":

```
VC(try c_1 finally c_2, P, Q) =

VC(c_1, VC(c_2, P, Q), true) \land

VC(c_1, true, VC(c_2, Q, Q))
```

Which reduces to:


$$VC(c_1, VC(c_2, P, Q), VC(c_2, Q, Q))$$

Hoare Rules and the Heap

When is the following Hoare triple valid?

$$\{A\} *x := 5 \{ *x + *y = 10 \}$$

- A *should be* "*y = 5 or x = y"
- The Hoare rule for assignment would give us:
 - [5/*x](*x + *y = 10) = 5 + *y = 10 =
 - *y = 5 (we lost one case)
- Why didn't this work?

Handling The Heap

- We do not yet have a way to talk about memory (the heap, pointers) in assertions
- Model the state of memory as a symbolic mapping from addresses to values:
 - If A denotes an address and M is a memory state then:
 - sel(M,A) denotes the contents of the memory cell
 - upd(M,A,V) denotes a new memory state obtained from M by writing V at address A

More on Memory

- We allow variables to range over memory states
 - We can quantify over all possible memory states
- Use the special pseudo-variable μ (mu) in assertions to refer to the current memory
- Example:

$$\forall i. \ i \geq 0 \land i < 5 \Rightarrow sel(\mu, A + i) > 0$$

says that entries 0..4 in array A are positive

Hoare Rules: Side-Effects

- To model writes we use memory expressions
 - A memory write changes the value of memory

$$\{ B[upd(\mu, A, E)/\mu] \} *A := E \{B\}$$

- Important technique: treat memory as a whole
- And reason later about memory expressions with inference rules such as (McCarthy Axioms, ~'67):

$$sel(upd(M, A_1, V), A_2) = \begin{cases} V & \text{if } A_1 = A_2 \\ sel(M, A_2) & \text{if } A_1 \neq A_2 \end{cases}$$

Memory Aliasing

- Consider again: { A } *x := 5 { *x + *y = 10 }
- We obtain:

```
A = [upd(\mu, x, 5)/\mu] (*x + *y = 10)
= [upd(\mu, x, 5)/\mu] (sel(\mu, x) + sel(\mu, y) = 10)
(1) = sel(upd(\mu, x, 5), x) + sel(upd(\mu, x, 5), y) = 10
= 5 + sel(upd(\mu, x, 5), y) = 10
= if x = y then 5 + 5 = 10 else 5 + sel(\mu, y) = 10
(2) = x = y or *y = 5
```

- Up to (1) is theorem generation
- From (1) to (2) is theorem proving

Alternative Handling for Memory

- Reasoning about aliasing can be expensive
 - It is NP-hard (and/or undecideable)
- Sometimes completeness is sacrificed with the following (approximate) rule:

$$sel(upd(M, A_1, V), A_2) = \begin{cases} V & \text{if } A_1 = (obviously) \ A_2 \\ sel(M, A_2) & \text{if } A_1 \neq (obviously) \ A_2 \\ P & \text{otherwise (p is a fresh new parameter)} \end{cases}$$

- The meaning of "obviously" varies:
 - The addresses of two distinct globals are ≠
 - The address of a global and one of a local are ≠
- PREfix and GCC use such schemes

VCGen Overarching Example

 Consider the program - Precondition: *B* : bool ∧ *A* : array(bool, *L*) 1: I := 0 R := B3: inv $l \geq 0 \wedge R$: bool if $I \ge L$ goto 9 assert saferd(A + I)T := *(A + I)I := I + 1R := Tgoto 3 9: return R - Postcondition: R: bool

VCGen Overarching Example

```
\forall A. \forall B. \forall L. \forall \mu
        B: bool \land A: array(bool, L) \Rightarrow
             0 \ge 0 \land B : bool \land
                   \forall I. \forall R.
                         I \geq 0 \land R : bool \Rightarrow
                                 I > L \Rightarrow R : bool
                                  I < L \Rightarrow saferd(A + I) \land
                                                1 + 1 > 0 \land
                                                sel(\mu, A + I) : bool
```

 VC contains both proof obligations and assumptions about the control flow

Mutable Records - Two Models

- Let r: RECORD { f1 : T1; f2 : T2 } END
- For us, records are reference types
- Method 1: one "memory" for each record
 - One index constant for each field
 - r.f1 is sel(r,f1) and r.f1 := E is r := upd(r,f1,E)
- Method 2: one "memory" for each field
 - The record address is the index
 - r.f1 is sel(f1,r) and r.f1 := E is f1 := upd(f1,r,E)
- Only works in strongly-typed languages like Java
 - Fails in C where &r.f2 = &r + sizeof(T1)

VC as a "Semantic Checksum"

- Weakest preconditions are an expression of the program's semantics:
 - Two equivalent programs have logically equivalent WPs
 - No matter how different their syntax is!

VC are almost as powerful

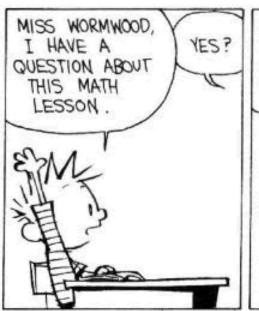
VC as a "Semantic Checksum" (2)

 Consider the "assembly language" program to the right

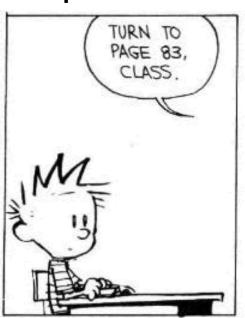
```
x := 4
x := (x == 5)
    assert x : bool
x := not x
    assert x
```

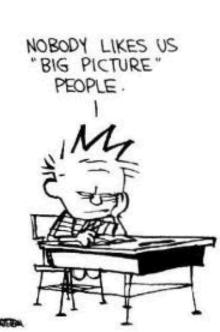
- High-level type checking is not appropriate here
- The VC is: $((4 == 5) : bool) \land (not (4 == 5))$
- No confusion from reuse of x with different types

Invariance of VC Across Optimizations


- VC is so good at abstracting syntactic details that it is syntactically preserved by many common optimizations
 - Register allocation, instruction scheduling
 - Common subexp elim, constant and copy propagation
 - Dead code elimination
- We have identical VCs whether or not an optimization has been performed
 - Preserves syntactic form, not just semantic meaning!
- This can be used to verify correctness of compiler optimizations (Translation Validation)

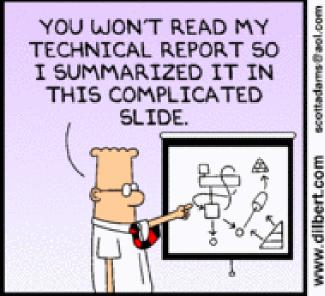

VC Characterize a Safe Interpreter


- Consider a fictitious "safe" interpreter
 - As it goes along it performs checks (e.g. "safe to read from this memory addr", "this is a null-terminated string", "I have not already acquired this lock")
 - Some of these would actually be hard to implement
- The VC describes all of the checks to be performed
 - Along with their context (assumptions from conditionals)
 - Invariants and pre/postconditions are used to obtain a finite expression (through induction)
- VC is valid ⇒ interpreter never fails
 - We enforce same level of "correctness"
 - But better (static + more powerful checks)

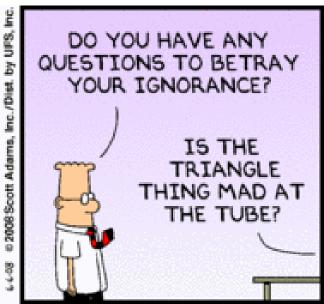

VC Big Picture

- Verification conditions
 - Capture the semantics of code + specifications
 - Language independent
 - Can be computed backward/forward on structured/unstructured code
 - Make Axiomatic Semantics practical

Invariants Are Not Easy


Consider the following code from QuickSort

```
int partition(int *a, int L_0, int H_0, int pivot) {
   int L = L_0, H = H_0;
   while(L < H) {
        while(a[L] < pivot) L ++;</pre>
        while(a[H] > pivot) H --;
        if(L < H) { swap a[L] and a[H] }
   return L
```


- Consider verifying only memory safety
- What is the loop invariant for the outer loop?

Done!

Questions?

