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One-Slide Summary

o A system of axiomatic semantics is sound if everything
we can prove is also true. if F{ A} c{B }thenF { A}cC

1B}
« We prove this by simultaneous induction on the

structure of the operational semantics derivation and
the axiomatic semantics proof.

e A system of axiomatic semantics is complete if we can
prove all true things. if F{ A} c{B}then+-{A}c{B}

e Our system is relatively complete (= just as complete
as the underlying logic). We use weakest
preconditions to reason about soundness. Verification
conditions are preconditions that are easy to compute.
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Soundness of Axiomatic Semantics

e Formal statement of soundness:
if-{A}c{B}thenE{A}c{B}
or, equivalently
Forallo,ifcFA o=

— How shall we
and Op . <c, 0> 00’ prove this, oh
and Pr::-{A}c{B} o557
theno’ B
e “Op” === “Opsem Derivation”

e “Pr” === “Axiomatic Proof”
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Not Easily!

e By induction on the structure of c?

- No, problems with while and rule of consequence
e By induction on the structure of Op?

- No, problems with while
e By induction on the structure of Pr?

- No, problems with consequence

e By simultaneous induction on the structure of
Op and Pr

- Yes! New Technique!
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Simultaneous Induction

e Consider two structures Op and Pr
- Assume that x < y iff x is a substructure of y
e Define the ordering

(0, p) < (0’, p’) iff
0<0 or o=0 andp<p’
- Called lexicographic (dictionary) ordering

e This < is a well-founded order and leads to
simultaneous induction

e |If 0 <0’ then h can actually be larger than h’!
It can even be unrelated to h’!
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Soundness of Axiomatic Semantics

e Formal statement of soundness:
fEF{A}c{B}thenE{A}c{B}
or, equivalently
Forall o,ifokF A

and Op :: <c, o> 0’
and Pr::F{A}c{B}
then o’ EB

e “Op” = “Opsem Derivation”
e “Pr” = “Axiomatic Proof”
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Simultaneous Induction

e Consider two structures Op and Pr
- Assume that x < y iff x is a substructure of y
e Define the ordering

(0, p) < (o', p’) iff
0<0 or o=0 andp<p’
- Called lexicographic (dictionary) ordering

e This < is a well founded order and leads to
simultaneous induction

e |If 0 <0’ then p can actually be larger than p’!
e It can even be unrelated to p’!
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Soundness of the While Rule

(Indiana Proof and the Slide of Doom)
o Case: last rule used in Pr : F {A} c {B} was the while rule:

Pr, :: - {A A b} c {A}
= {A} while b do c {A A = b}

e Two possible rules for the root of Op (by inversion)
- We’ll only do the complicated case:

Op, :: <b, o> Otrue  Op,:: <c,0> 0o’ Op,:: <whilebdoc, o’ >00’

Y

<whilebdoc, o> 00"
Assume that o E A

Toshow that g’’’ EAA =D

« By soundness of booleans and Op, we get a E b
- HenceaEAAD

« By IH on Pr, and Op, we get @’ F A
« By IH on Prand Op, we get ¢’ F A A = b, q.e.d. (tricky!)
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Soundness of the While Rule

e Note that in the last use of IH the derivation
Pr did not decrease

« But Op, was a sub-derivation of Op

e See Winskel, Chapter 6.5, for a soundness
proof with denotational semantics
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Completeness of Axiomatic
Semantics
f = {A} c {B} can we always derive - {A} c {B} ?

f so, axiomatic semantics is complete

f not then there are valid properties of programs
that we cannot verify with Hoare rules :-(

Good news: for our language the Hoare triples are
complete

Bad news: only if the underlying logic is complete
(whenever = A we also have - A)

- this is called relative completeness
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Examples, General Plan

e OK, so:
F{x<b5Az=2}y:=x+2{y<7/}
e Can we prove it?
2 {x<OANz=2}y:=x+2{y<T/}
e Well, we could easily prove:
Fi{x+2<7}y:i=x+2{y<7}
e And we know ...
FX<H5ANzZ=2=x+2<7
e Shouldn’t those two proofs be enough?
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Proof Idea

e Dijkstra’s idea: To verify that { A} c {B}
a) Find out all predicates A’ such thatF{ A’ } c{ B}
 call this set Pre(c, B) (Pre = “pre-conditions”)

b) Verify for one A’ € Pre(c, B) that A = A’
e Assertions can be ordered:

false = true

Pre(c, B)

strong i Tk : weak
WeaKes

A precondition: WP(c, B)

e Thus: compute WP(c, B) and prove A = WP(c, B)
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Proof Idea (Cont.)

« Completeness of axiomatic semantics:
fE{A}c{B}then-{A}c{B}

o Assuming that we can compute wp(c, B) with the
following properties:

e Wp is a precondition (according to the Hoare rules)
—{wp(c,B)}c{B}
e wp is (truly) the weakest precondition
If F{A}c{B} then F A= wp(c, B)
- A = wp(c, B) - {wp(c, B)} c {B}
- {A} c {B}

« We also need that whenever = A then - A'!
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Q: Radio (119 / 842)

« Complete the following
Garrison Keillor catchphrase:
"And that's the news from
Lake Wobegon, where all the
women are strong, ..."



Q: Movie Music (422 / 842)

e This 1986 song by Queen is the
theme for the Highlander
movie and television series.



Q: Bonus

e Despite having physically appeared in only
about ten movies, this Indian singer has
received the Bharat Ratna (India’s highest
civilian honor) and holds the Guinness Book of
World Records entry for “most
recordings” (30,000 songs by 1987). At one
point the Pakistani prime minister said the he
would “gladly exchange [her] for Kashmir”.
She is the sister of Asha Bhosle and specializes
in “playback” or “voiceover” movie music.



Q: Advertising (797 / 842)

o Identify the company associated
with two of the following four
advertising slogans or symbols.

- "Reach out and touch someone.”

- "It just keeps going and going and
going.”

- "Now You're Playing With Power!”

- "We bring good things to life.”



Axiomatic Semantics:
Preconditions

MY STUDENTS DREW ME INTO
ANOTHER FOLIMCAL ARGUMENT.

[ EH; 1T HAPPENS.

LATELY, POLITICAL DESATES BOTHER
ME. THEY JUST SHOW HOW GOoD
OMART PEOPLE ARE AT RATIONALIZING.

THE WORLD 15 50 COMPLICATED - THE MORE
T LEARN, THE LESS CLEAR ANYTHING GETS.
THERE. ARE T00 MANY' IDEAS AND ARGUMENTS
TOPICK AND CHOOSE FROM. How (AN T TRUST
MYSELF Tp Know THETRU'H} ABOUT ANY THING?
AND IF EVERYTHING T KNOW
15 S0 SHAKY, WHAT 0 EARTH
RM I DOING TEACHING?

r 8

T GUESS You JUST DO

YOUR BEST. NO ONE CAN
IMPART PERFECT UNIVERSAL
TRUTHS TO THER STUDENTS.

| e

... EXCEPT /
MATH TEH[HERS

THHNK YOU.
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Weakest Preconditions

e Define wp(c, B) inductively on c, following the Hoare rules:
« WP(C;; G, B) = {A} ¢, {C} {C} ¢, {B}
wp(c,, Wp(c,, B)) {A}c;c, {B}

e WP(X:=¢, B) =
[e/x]B {[e/x]B } x := E {B}

A ¢ 1BS A GBS
{E=A A—-E= A}if E then c, else c, {B}

« wp(if E then c, else c,, B) =
E = wp(c,, B) A —=E = wp(c,, B)
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Weakest Preconditions for Loops

e We start from the unwinding equivalence
whilebdoc =
if b then c; while b do c else skip
e Let w = while b do c and W = wp(w, B)
e We have that
W=b=wp(c,W) A -b=0B
e But this is a recursive equation!
- We know how to solve these using domain theory
e But we need a domain for assertions
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A Partial Order for Assertions

Which assertion contains the least information?
- “true” - does not say anything about the state

What is an appropriate information ordering ?
ACA’ iff FA = A

Is this partial order complete?
- Takeachain A, C A, C ..
- Let AA be the infinite conjunction of A.
o E AA, iff for all i we have that o F A

- | assert that /\A. is the least upper bound

Can AA. be expressed in our language of assertions?

- In many cases: yes (see Winskel), we’ll assume yes for
now
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Weakest Precondition for WHILE
e Use the fixed-point theorem
F(A)=b = wp(c, AAN—-Db=28
- (Where did this come from? Two slides back!)
- | assert that F is both monotonic and continuous

e The least-fixed point (= the weakest fixed
point) is

wp(w, B) = AFi(true)

e Notice that unlike for denotational semantics
of IMP we are not working on a flat domain!
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Weakest Preconditions (Cont.)

Define a family of wp’s

- wp,(while e do c, B) = weakest precondition on which

the loop terminates in B if it terminates in k or fewer
iterations

wp,= - E=B
wp, = E = wp(c, wp,) AN-E=B

wp(while e do ¢, B) = A\, ., wp, = lub {wp, | k > 0}
See Necula document on the web page for the proof
of completeness with weakest preconditions

Weakest preconditions are
- Impossible to compute (in general)
- Can we find something easier to compute yet sufficient?
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Not Quite Weakest Preconditions

e Recall what we are trying to do:

false = true
Pre(s, B)
strong I ! weak
weakest
A precondition: WP(c, B)
verification

condition: VC(c, B)

e Construct a verification condition: VC(c, B)
- Our loops will be annotated with loop invariants!
- VC is guaranteed to be stronger than WP

- But still weaker than A: A = VC(c, B) = WP(c, B)
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Groundwork

Factor out the hard work

- Loop invariants

- Function specifications (pre- and post-conditions)
Assume programs are annotated with such specs
- Good software engineering practice anyway

- Requiring annotations = Kiss of Death?

New form of while that includes a loop invariant:

while, b do c

- Invariant formula Inv must hold every time before b is
evaluated
A process for computing VC(annotated_command,
post_condition) is called VCGen
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Verification Condition Generation

e Mostly follows the definition of the wp
function:

VC(skip, B) =B
VC(c,; c,, B) = VC(c,, VC(c,, B))
VC(if b then ¢, else c,, B) =

b = V(C(c,, B) A—b = VC(c,, B)
VC(x := e, B) =[e/x] B
VC(let x =einc, B) = [e/x] VC(c, B)
VC(while . b do ¢, B) =7

Inv
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VCGen for WHILE

VC(while,, e doc, B) =
Inv A (VX,..X,. Inv = (e = VC(c, Inv) A\ —e=B))
— \ y Y, \ Y
Inv holds Inv is preserved in B holds wh.en the
on entry loop terminates

an arbitrary iteration

in an arbitrary iteration

 Inv is the loop invariant (provided externally)
¢ X, ..., X, a@re all the variables modified in c

e The V is similar to the V in mathematical induction:
P(0) A Vn € N. P(n) = P(n+1)

#27



Example VCGen Problem

e Let’s compute the VC of this program with
respect to post-condition x # 0

O
.
X = 0;
y =2; -
while >0 do First, what do we
xry=2 y expect? What pre-
° — -1 condition do we
y ) y 1 ) need to ensure

X =X + 1 x#0 after this?
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Example of VC

e By the sequencing rule, first we do the while loop
(call it w):
while

' X+y2y>Odo
Yy =Y-
X —x+1

e VCGen(w, X £ 0) = x+y=2 A

VX,y. x+y=2 = (y>0 = VC(c, x+y=2) Ay<0=x%£0)
o VCGen(y:=y-1; X:=x+1, X+y=2)

(x+1) + (y- 1) 2
o W Result: x+y=2 A
VX,y. X+y=2 = (y>0 = (x+1)+(y-1)=2 A y<0=x%#0)
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Example of VC (2)

e VC(W, X #0) = x+y=2 A
VX,Y. X+y=2 =
(y>0 = (x+1)+(y-1)=2 ANy<0=x#%£0)
e VC(X:=0;y:=2;w,XxZ0)=0+2=2 A
VX,y. X+y=2 =
(y>0 = (x+1)+(y-1)=2 ANy<0=x#0)

e 50 now we ask an automated theorem prover
to prove it.
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Thoreau, Thoreau, Thoreau

$ ./Simplify
> (AND (EQ (+ 0 2) 2)
(FORALL ( x y ) (IMPLIES (EQ (+ x y) 2)
(AND (IMPLIES (> y 0)
(EQ (+ (+ x 1)(-y 1)) 2))
(IMPLIES (<=y 0) (NEQ x 0))))))
1: VvValid.

e Huzzah!
o Simplify is a non-trivial five megabytes
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Can We Mess Up VCGen?

e The invariant is from the user (= the
adversary, the untrusted code base)

e Let’s use a loop invariant that is too weak,
like “true”.

e VC = true A VX,y. true =
(y>0 = true A y<0 = x#%0)
e Let’s use a loop invariant that is false, like “x
Z 07,
e VC=0%#0A VX,y. X 20 =
(y>0=x+1#20 N y<0=x%0)
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Emerson, Emerson, Emerson

$ ./Simplify
> (AND TRUE
(FORALL ( x vy ) (IMPLIES TRUE
(AND (IMPLIES (> y 0) TRUE)
(IMPLIES (<=y 0) (NEQ x 0))))))
Counterexample: context.:
(AND
(EQ x 0)
(<= y 0)
)
1: Invalid.

e OK, so we won’t be fooled.

#33



Soundness of VCGen

e Simple form
F{VC(c,B)jc{B}
e Or equivalently that
F VC(c, B) = wp(c, B)
e Proof is by induction on the structure of c
- Try it!
e Soundness holds for any choice of invariant!
e Next: properties and extensions of VCs
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Questions

e Homework?
e Project proposal?
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