Proof Techniques
for Operational
Semantics

#1

Small-Step
Contextual Semantics

e In small-step contextual semantics,
derivations are not tree-structured

e A contextual semantics derivation is a
sequence (or list) of atomic rewrites:

<x+(7-3),0> — <x+(4),0> 7 <5+4,0> — <9,0>

o(x)=5

If <r, 0> - <e, 0’> S——
then <H[r], 6> —» <H[e], o’> H = context (has hole)

#2

Context Decomposition

e Decomposition theorem:

If c is not “skip” then there exist unique
H and r such that c is H[r]

- “Exist” means progress

- “Unique” means determinism

DO YO BELIEYE Yoiy MEAN, THET CUR YEAH . THET THE THINGS | [/ WHaT &
? [NES BRY PREDESINED 7} | WE DO ARE INENITABLE SR
IN EATE L _,
-
S e / = _
: | -, - ;' I [a - =
= ‘%) = : ' 1] . .F;'l-

' TE . 5 .;.:.-I'l) , a ., -

Short-Circuit Evaluation

 What if we want to express short-circuit
evaluation of [?

- Define the following contexts, redexes and
local reduction rules

H:=...| HODb,

r::=... | trueldb | false Ob
<true b, 0> - <b, 0>
<false b, o> - <false, o>

- the local reduction kicks in before b, is
evaluated

#4

Contextual Semantics Summary

e Can view ¢ as representing the program counter

e Contextual semantics is inefficient to implement
directly

« The major advantage of contextual semantics: it
allows a mix of local and global reduction rules

- For IMP we have only local reduction rules: only the
redex is reduced

- Sometimes it is useful to work on the context too
- We’ll do that when we study memory allocation, etc.

#5

Cunning Plan for
Proof Techniques

« Why Bother?
e Mathematical Induction
e Well-Founded Induction

e Structural Induction

- “Induction On The Structure Of
The Derivation”

#6

One-Slide Summary

Mathematical Induction is a proof technique: If you
can prove P(0) and you can prove that P(n) implies
P(n+1), then you can conclude that for all natural
numbers n, P(n) holds.

Induction works because the natural numbers are
well-founded: there are no infinite descending
chainsn>n-1>n-2>...>....

Structural induction is induction on a formal
structure, like an AST. The base cases use the leaves,
the inductive steps use the inner nodes.

Induction on a derivation is structural induction
applied to a derivation D (e.g., D::<c, o> 0 0’).

#7

Why Bother?

e | am loathe to teach you anything that |
think is a waste of your time.

e Thus | must convince you that inductive
opsem proof techniques are useful.

- Recall class goals: understand PL research
techniques and apply them to your research

e This motivation should also highlight
where you might use such techniques in
your own research.

#8

nderestimate

example posed by the
Jainst this proof would

Gesture, no matter

il clata they have
*"*aﬁ'tru tiralNnductions =
—_—

Frow the-mlElnElEs proof technique
eI 1o oest we use _ob

i, A New Hope

Classic Example (Schema)

“A well-typed program cannot go wrong.”
- Robin Milner

When you design a new type system, you must show
that it is safe (= that the type system is sound with
respect to the operational semantics).

A Syntactic Approach to Type Soundness. Andrew K.
Wright, Matthias Felleisen, 1992.

- Type preservation: “if you have a well-typed program
and apply an opsem rule, the result is well-typed.”

- Progress: “a well-typed program will never get stuck in a
state with no applicable opsem rules”

Done for real languages: SML/NJ, SPARK ADA, Java

- PL/I, plus basically every toy PL research language ever.

#10

Classic Examples
CCured Project (Berkeley)

- A program that is instrumented with CCured run-time checks (=
“adheres to the CCured type system”) will not segfault (= “the x86
opsem rules will never get stuck”).

Vault Language (Microsoft Research)

- A well-typed Vault program does not leak any tracked resources and
invokes tracked APIs correctly (e.g., handles IRQL correctly in
asynchronous Windows device drivers, cf. Capability Calculus)

RC - Reference-Counted Regions For C (Intel Research)

- A well-typed RC program gains the speed and convenience of region-

based memory management but need never worry about freeing a
region too early (run-time checks).

Typed Assembly Language (Cornell)

- Reasonable C programs (e.g., device drivers) can be translated to
TALx86. Well-typed TALx86 programs are type- and memory-safe.

Secure Information Flow (Many, e.g,. Volpano et al. ‘96)

- Lattice model of secure flow analysis is phrased as a type system, so
type soundness = noninterference.

#11

Recent Examples

“The proof proceeds by rule induction over the
target term producing translation rules.”

- Chakravarty et al. ’05
“Type preservation can be proved by standard

induction on the derivation of the evaluation
relation.”

- Hosoya et al. '05
“Proof: By induction on the derivation of N | W.”
- Sumi and Pierce 05

Method: chose four POPL 2005 papers at random,
the three above mentioned structural induction.

(emphasis mine)

#12

Induction

e Most important technique for studying the
formal semantics of prog languages

- If you want to perform or understand PL
research, you must grok this!

 Mathematical Induction (simple)
e Well-Founded Induction (general)
e Structural Induction (widely used in PL)

#13

Mathematical Induction
e Goal: prove [In I N. P(n)

» Base Case: prove P(0)

e Inductive Step:
- Prove V n>0. P(n) = P(n+1)
- “Pick arbitrary n, assume P(n), prove P(n+1)”

e Why does induction work?

Why Does It Work?

e There are no infinite descending chains of
natural numbers

e For any n, P(n) can be obtained by starting
from the base case and applying n
instances of the inductive step

NG, JUST \ENNE
HIM HERE .

CMON, CALIN. WE'RE
GOING TO THE STORE.

IF YOU CAN'T WIN
BY REASON, GO
FOR NOWUME.

I =

V11

|

Well-Founded Induction

e Arelation < O A x A is well-founded if there are
no infinite descending chains in A
- Example: <, ={ (x, x+1) | x O N}
e aka the predecessor relation
- Example: < ={(X,y) | X, yON andx <y}

e Well-founded induction:
- To prove [x [A. P(x) it is enough to prove
(Ox OA. [Oy < x 0O P(y)] O P(x)

o« If < is <, then we obtain mathematical induction
as a special case

Structural Induction

e Recalle::=n|e +e,|e "e, | X

e Define < [0 Aexp x Aexp such that
e, <e +e, e, <e +e,
e, e e e,=e "e
- no other elements of Aexp x Aexp are related by =
e To prove Le [1 Aexp. P(e)
- F0On 0O Z. P(n)
x L. P(x)
e,, €, L1 Aexp. P(e,) UP(e,) LI P(e, +e,)
e,, e [Aexp. P(e,) LOP(e,) LI P(e, * e,) #17

Notes on Structural Induction

e Called structural induction because the
proof is guided by the structure of the
expression

e One proof case per form of expression

- Atomic expressions (with no subexpressions)
are all base cases

- Composite expressions are the inductive case

e This is the most useful form of induction
in the study of PL

#18

Example of Induction on

Structure of Expressions

e Let

- L(e) be the # of literals and variable occurrences in e
- O(e) be the # of operators in e

e Prove that e [Aexp. L(e) = O(e) + 1

e Proof: by induction on the structure of e
- Casee=n.L(e)=1and O(e) =0
- Casee=x.L(e)=1and O(e) =0
- Casee=¢e, +e,.
e L(e) =L(e;) +L(e,) and O(e) = O(ey) + O(e,) + 1
« By induction hypothesis L(e,) = O(e,) + 1 and L(e,) = O(e,) + 1
e Thus L(e) =O(e,) + O(e,) +2 =0(e) + 1
- Case e = e, * e,. Same as the case for +
#19

Other Proofs by Structural
Induction on Expressions

e Most proofs for Aexp sublanguage of IMP

« Small-step and natural semantics obtain
equivalent results:

JdeOExp.OnON.e - n < elln

o Structural induction on expressions works
here because all of the semantics are
syntax directed

#20

Stating The Obvious
(With a Sense of Discovery)

e YOU are given a concrete state o.

e YOU have —<x+1,0>05

e YOoUu also have <x + 1, o> []188
e Is this possible? '

Why That Is Not Possible

e Prove that IMP is deterministic
e Aexp. Do O 2. On,n” ON. <e,0>0n O <e,o>0n" O n=n’
Ob OBexp. Do O Z. Ot, " OB. <b,o>0t O <b,o>0t" O t=t

Oc 0 Comm. Uo,o0’,0”’ 0. <¢c, 0> 00’ O <c,o0>00”’ 0O o =0"
« No immediate way to use mathematical induction

e For commands we cannot use induction on the
structure of the command

— while’s evaluation does not depend only on the evaluation
of its strict subexpressions

<b, 0> Otrue <c,o>0d <whilebdoc, o> 00"

<while b do ¢, o> 0 0"

#22

Q: Music (141 / 842)

e Give the next line in 3 of the
following 5 song lyrics:

- "Almost heaven / West Virginia”
- "Bye bye love / Bye bye happiness”

- "Casey would waltz with a strawberry
blonde”

- "Cecilia, youre breaking my heart”
- "Do - a deer, a female deer”

#23

Q: Movies (292 / 842)

e From the 1981 movie Raiders
of the Lost Ark, give either
the protagonist's phobia or
composer of the musical
score.

Q: Games (495 / 842)

e Name the 1969 Parker
Brothers foam plastic material
used in childsafe toys.

Recall Opsem

» Operational semantics
assigns meanings to

programs by listing rules of PhilipH.Dick
inference that allow you to e Can Remember [t
prove judgments by making I~ 7
derivations. S0y . %

e &

e A derivation is a tree-
structured object made up
of valid instances of
inference rules.

We Need Something New

e Some more powerful form of induction ...
o With all the bells and whistles!

P 4 . -
NEW FROM ! CONDITIONING SHAMPOO | INOW SPECIALLY FORMULATED
- _._FH..: _-L.?REA - | FOR BEAUTIFUL VIBRANT ||WITH OUR PATENTED GLY- L O R E ,& L
y HAIR WiTH Efrﬁd Beey.. || CERQ- Emrmmaf

1| FOR A HEAL TH,.'ER
SHEEN

Induction on the
Structure of Derivations

e Key idea: The hypothesis does not just assume a ¢ [J
Comm but the existence of a derivation of <c, o> [o’

e Derivation trees are also defined inductively, just like
expression trees

e A derivation is built of subderivations:

<x+1,0,p,06-i

<X, 0,> 03 -i 5-i<3 <x:=x+1, 0,,»> 00, <W, o> O g,

<x<5H,0,.>0true «x:=x+1; W, 0,»> 0o,

<while x<5dox:i=x+1,0,>00,

e Adapt the structural induction principle to work on the
structure of derivations

#28

Induction on Derivations

To prove that for all derivations D of a
judgment, property P holds

For each derivation rule of the form

H, ... H
C

n

Assume P holds for derivations of H, (i = 1..n)

Prove the the property holds for the derivation
obtained from the derivations of H. using the

given rule

#29

I USED T HATE WRITING | |1 REALITED THAT THE

N ASSIGHMENTS , BUT MOW | | PURPOSE OF WRITING 1S
ew T ENH THEM, | TO INFLATE 'WEAK IDEAS.
N /'H_J | | CRSCURE PODR REASOMING,

N ota t'l on N | | AMD IMHIBIT CLARITY.

o Write D :: Judgment é‘gﬁ

: R

to mean “D is the '“~é _—TF‘“I"’
derivation that \
proves Judgment”

WITH A LITTLE PRACTICE, |"TWE DYMAMICS OF INTERBEING

WRITING CAM BE AM AHD MENOLOGICAL IMPERATIVES

e Example: INTIMIDATING AND W DICK AND JANE - A STUDY
IMPEMETRABLE FOB! It PSTCHIC TRANSRELATIONAL
WANT T SEE M BoOK

REFORT 7

D::<x+1, 0> 012

Induction on Derivations (2)

Prove that evaluation of commands is deterministic:
<c,o>Uoc’0 Do’ 02.<c,o>00’0 o0’=0”

Pick arbitrary ¢, o, 0’ and D :: <c, o> O’
To prove: [Io”’ 2. <c, o> o’ [o’ =a0”’
- Proof: by induction on the structure of the

derivation D
Case: last rule used in D was the one for skip

D ::

<skip, 0> 0o

This means that ¢ = skip, and ¢’ = o

By inversion <c, o> [Jo’’ uses the rule for skip

Thus o’’’ =0

This is a base case in the induction 431

Induction on Derivations (3)

Case: the last rule used in D was the one for
sequencing

D,ii<c,, 0000, D,:ii<c, 0p 00

D
<C. C,, 0> 00
Pick arbitrary ¢’’ such that D’ :: <c,; ¢,, o> U0’ .

- by inversion D’’ uses the rule for sequencing

- and has subderivations D’’, :: <c,, 0> [J0’’, and
D, it <c,, 07> 00"

By induction hypothesis on D, (withD”’.): o, =a0’’,
- Now D’’, :: <c,, o> 00"’

By induction hypothesis on D, (with D’’,): 0’ =0
This is a simple inductive case

)

#32

Induction on Derivations (4)

Case: the last rule used in D was while true

D,:i<b,o>0Otrue D,:<c,0>00;, D;:<«whilebdoc, opOd

D ::
<while b do ¢, o> O’

Pick arbitrary o’’ such that D’’::<while b do ¢, o> [J

().H

- by inversion and determinism of boolean expressions, D’’
also uses the rule for while true

- and has subderivations D’’, :: <c, o> [J0’’, and
D, 1t <W, ¢’ > Oa”’
By induction hypothesis on D, (with D”’,): o, = a’’,

- Now D’’; :: <whilebdoc, ,> 0"’

)

By induction hypothesis on D, (with D’’,): 0’ = 0o 423

What Do You,
The Viewers At Home, Think?

e Let’'sdo 1T true together!
e Case: the last ruleinDwas 1T true

D, i1 <b, 0> Otrue D, ::1<cl,0> 00,

D ::
<if bdo clelse c2, o> 0o,

e Try to do this on a piece of paper. In a few
minutes I’ll have some lucky winners come
on down.

#34

Induction on Derivations (5)

e Case: the last rulein Dwas 1T true

D, i <b, 0> Otrue D,:i<cl, o> 00’

<if bdo clelse c2, o> 00’

e Pick arbitrary ¢" such that
D" :: <if bdo c1 else c2, o> 00"
- By inversion and determinism, D" also uses 1f true
- And has subderivations D’’, :: <b, o> [true and
D, :: <c1, o> 00"

By induction hypothesis on D, (with D",): ¢' = ¢’

#35

Induction on Derivations
Summary

e If you must prove [x [A. P(x) O Q(x)

with A inductively defined and P(x) rule-defined
we pick arbitrary x 0 A and D :: P(x)

we could do induction on both facts
e XA leads to induction on the structure of x
e D:: P(x) leads to induction on the structure of D

Generally, the induction on the structure of the
derivation is more powerful and a safer bet

e Sometimes there are many choices for induction
- choosing the right one is a trial-and-error process
- a bit of practice can help a lot

#36

Optional

Equivalence Material

Begins

e Two expressions (commands) are equivalent if
they yield the same result from all states

e, = e, iff
Lo U 2. Un O N.
<e,, 0> Uniff <e,, 0> [n
and for commands
c, = c, iff
Ho, o0’ O 2.
<c,, 0> Ua’ iff <c,, o> U0’

#37

Notes on Equivalence

Equivalence is like logical validity
- It must hold in all states (= all valuations)
- 2=1+1islike “2 =1+ 1 is valid”
- 2 =1+ x might or might not hold.
e S0, 2 is not equivalent to 1 + X

Equivalence (for IMP) is undecidable

- If it were decidable we could solve the halting problem
for IMP. How?

Equivalence justifies code transformations
- compiler optimizations

- code instrumentation

- abstract modeling

Semantics is the basis for proving equivalence

#38

Equivalence Examples
e Skip; C=C
e whilebdoc=
if b then c; while b do c else skip
e Ife,=e,thenx:=e, =x:=¢,
e while true do skip = while true do x :=x + 1

e Let c be
while x #y do
ifx>ythenx:=x-yelsey:=y-X

then
(X :=221;y :=527;)= (X :=17;y :=17)

#39

Potential Equivalence

e(X:=€;X:=6,)=X:=¢,
e |s this a valid equivalence?

#40

Not An Equivalence

e (X:=e;Xi=g)»X:=¢,
e lie. Chigau yo. Dame desul!
« Not a valid equivalence for all e, e,.

e Consider:
- (X := X+1; X 1= X+2) o X i= X+2

« But for n,, n, it’s fine:
- (X:=n,;; X:=n,)=X:=n,

#41

Proving An Equivalence

e Prove that “skip; ¢ = c” forall c

e Assume that D :: <skip; ¢, o> o

)

e By inversion (twice) we have that

<skip, o>0ac D,:<,o>00

<skip; ¢c,0> 00

e Thus, we have D, :: <c,0>
e The other direction is simi

10’

ar

#42

Proving An Inequivalence

e Prove that x :=y = X :=Zwheny !=%£z

o |t suffices to exhibit a g in which the two
commands yield different results

e Let o(y) =0and o(z) = 1
e Then
<X :=Yy, 0> Uag[x := 0]
<X :=2, 0> Uag[x :=1] Optional

Material
Ends

#43

Summary of
Operational Semantics

Precise specification of dynamic semantics
- order of evaluation (or that it doesn’t matter)

- error conditions (sometimes implicitly, by rule
applicability; “no applicable rule” = “get stuck”)

Simple and abstract (vs. implementations)

- no low-level details such as stack and memory
management, data layout, etc.

Often not compositional (see while)

Basis for many proofs about a language
- Especially when combined with type systems!

Basis for much reasoning about programs
Point of reference for other semantics

#44

Homework

e Homework 1 Due Today

« Homework 2 Due Next Thursday
e Read Winskel Chapter 5

- Pay careful attention.

e Read Winskel Chapter 8

- Summarize.

#45

