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In Our Last Exciting Episode



#2

Lessons From Model Checking
• To find bugs, we need specifications

– What are some good specifications?
• To convert a program into a model, we need 

predicates/invariants and a theorem prover.
– What are important predicates? Invariants?
– What should we track when reasoning about a 

program and what should we abstract? 
– How does a theorem prover work?

• Simple algorithms (e.g., depth first search, pushing 
facts along a CFG) can work well
– ... under what circumstances?



#3

The Big Lesson

•To reason about a program 
(= “is it doing the right 
thing? the wrong thing?”) 
we must understand what 
the program means!



  

A Simple Imperative Language
Operational Semantics

(= “meaning”)



  

Homework #0 Due Today

• Can't get BLAST to work? 
– Use power1.cs.virginia.edu
– Plus the BLAST linux binaries
– cp all of them (e.g., csi*, pblast*, ...) to ~/bin



  

Medium-Range Plan
• Study a simple imperative language IMP

– Abstract syntax (today)
– Operational semantics (today)
– Denotational semantics
– Axiomatic semantics
– … and relationships between various 

semantics (with proofs, peut-être)
– Today: operational semantics 

•Follow along in Chapter 2 of Winskel



  

Syntax of IMP
• Concrete syntax: The rules by which programs can 

be expressed as strings of characters
– Keywords, identifiers, statement separators vs. 

terminators (Niklaus!?), comments, indentation 
(Guido!?)

• Concrete syntax is important in practice
– For readability (Larry!?), familiarity, parsing speed 

(Bjarne!?), effectiveness of error recovery, clarity 
of error messages (Robin!?)

• Well-understood principles
– Use finite automata and context-free grammars
– Automatic lexer/parser generators



  

(Note On Recent Research)

• If-as-and-when you find yourself making a 
new language, consider GLR (elkhound) 
instead of LALR(1) (bison)

• Scott McPeak, George G. Necula: 
Elkhound: A Fast, Practical GLR Parser 
Generator. CC 2004: pp. 73-88 

• As fast as LALR(1), more natural, handles 
basically all of C++, etc.



  

Abstract Syntax

• We ignore parsing issues and study 
programs given as abstract syntax trees
– I provide the parser in the homework …

• An abstract syntax tree is (a subset of) the 
parse tree of the program
– Ignores issues like comment conventions
– More convenient for formal and algorithmic 

manipulation
– All research papers use ASTs, etc. 



  

IMP Abstract Syntactic Entities

• int          integer constants (n ∈ Z)

• bool       bool constants (true, false)
• L           locations of variables (x, y)
• Aexp   arithmetic expressions (e)
• Bexp      boolean expressions (b)
• Com        commands (c)

– (these also encode the types)



  

Abstract Syntax (Aexp)
• Arithmetic expressions (Aexp)

     e ::=  n              for n ∈ Z 

             | x             for x ∈ L

             | e1 + e2   for e1, e2 ∈ Aexp

             | e1 - e2    for e1, e2 ∈ Aexp

             | e1 * e2    for e1, e2 ∈ Aexp

• Notes:
– Variables are not declared
– All variables have integer type
– No side-effects (in expressions)      



  

Abstract Syntax (Bexp)
• Boolean expressions (Bexp)
     b ::= true  
             | false 

             | e1 = e2      for e1, e2 ∈ Aexp

             | e1 ≤ e2      for e1, e2 ∈ Aexp

             | ¬ b          for b ∈ Bexp

             | b1 ∧ b2      for b1, b2 ∈ Bexp

             | b1 ∨ b2      for b1, b2 ∈ Bexp

            



  

“Boolean”

• George Boole
– 1815-1864

• I’ll assume you 
know boolean 
algebra …



  

Abstract Syntax (Com)
• Commands (Com)
     c ::=    skip
        | x := e                     x∈L ∧ e∈Aexp 
        | c1 ; c2                   c1,c2∈Com

        | if b then c1 else c2  c1,c2∈Com ∧ b∈Bexp

        | while b do c         c∈Com ∧ b∈Bexp
• Notes:

– The typing rules are embedded in the syntax definition
– Other parts are not context-free and need to be checked 

separately (e.g., all variables are declared)
– Commands contain all the side-effects in the language
– Missing: pointers, function calls, what else?



  

Why Study Formal Semantics?

• Language design (denotational)
• Proofs of correctness (axiomatic)
• Language implementation (operational)
• Reasoning about programs
• Providing a clear behavioral specification
• “All the cool people are doing it.”

– You need this to understand PL research
• “First one’s free.” 



  

Consider This Legal Java

x = 0;
try {
  x = 1;
  break mygoto;
} finally {
  x = 2;
  raise 

NullPointerException;
}
x = 3; 
mygoto: 
x = 4; 

• What happens when 
you execute this 
code?

• Notably, what 
assignments are 
executed? 



  

14.20.2 Execution of try-catch-finally
• A try statement with a finally block is executed by first executing the try block. Then there is 

a choice:
• If execution of the try block completes normally, then the finally block is executed, and then 

there is a choice: 
– If the finally block completes normally, then the try statement completes normally. 
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for 

reason S. 
• If execution of the try block completes abruptly because of a throw of a value V, then there is 

a choice: 
– If the run-time type of V is assignable to the parameter of any catch clause of the try statement, then 

the first (leftmost) such catch clause is selected. The value V is assigned to the parameter of the 
selected catch clause, and the Block of that catch clause is executed. Then there is a choice: 

• If the catch block completes normally, then the finally block is executed. Then there is a choice: 
– If the finally block completes normally, then the try statement completes normally. 
– If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason. 

• If the catch block completes abruptly for reason R, then the finally block is executed. Then there is a choice: 
– If the finally block completes normally, then the try statement completes abruptly for reason R. 
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is 

discarded). 

– If the run-time type of V is not assignable to the parameter of any catch clause of the try statement, 
then the finally block is executed. Then there is a choice: 

• If the finally block completes normally, then the try statement completes abruptly because of a throw of the value 
V. 

• If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and 
the throw of value V is discarded and forgotten). 

• If execution of the try block completes abruptly for any other reason R, then the finally block 
is executed. Then there is a choice: 

– If the finally block completes normally, then the try statement completes abruptly for reason R. 
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for 

reason S (and reason R is discarded). 



  

Can’t we just nail this somehow?Can’t we just nail this somehow?



  

Ouch! Confusing.

• Wouldn’t it be nice if we had some way of 
describing what a language (feature or 
program) means …
– More precisely than English
– More compactly than English
– So that you might build a compiler
– So that you might prove things about 

programs



  

Analysis of IMP

• Questions to answer:

– What is the “meaning” of a given IMP 

expression/command?

– How would we go about evaluating IMP expressions 

and commands?

– How are the evaluator and the meaning related?



  

Three Canonical Approaches

• Operational
– How would I execute this? 
– “Symbolic Execution”

• Axiomatic
– What is true after I 

execute this?

• Denotational
– What is this trying to 

compute? 



  

An Operational Semantics

• Specifies how expressions and commands should be 
evaluated

• Depending on the form of the expression
– 0, 1, 2, . . . don’t evaluate any further.

• They are normal forms or values.
– e1 + e2 is evaluated by first evaluating e1 to n1 , then 

evaluating e2 to n2 . (post-order traversal)
• The result of the evaluation is the literal representing n1 + n2.

– Similarly for e1 * e2

• Operational semantics abstracts the execution of a 
concrete interpreter
– Important keywords are colored & underlined in this class.



  

Semantics of IMP

• The meanings of IMP expressions depend on the 
values of variables 
– What does “x+5” mean? It depends on “x”!

• The value of variables at a given moment is 
abstracted as a function from L to Z (a state)

– If x = 8 in our state, we expect “x+5” to mean 13

• The set of all states is Σ = L → Z 

• We shall use σ to range over Σ
–  σ, a state, maps variables to values



  

Program State

• The state σ is somewhat like “memory”
– It holds the current values of all variables

– Formally, σ : L → Z 



Q:  Advertising  (782 / 842) 

•Name 3 of the 12 
"magically delicious" 
marshmallow types in 
Lucky Charms.  



Q:  Advertising  (784 / 842) 

•Commercials for this 
product featured a giant 
anthropomorphic pitcher 
that crashed through walls 
to deliver refreshment.  



Q:  Cartoons  (682 / 842) 

•Why is Gargamel trying to 
capture the Smurfs?  



  

Notation: Judgment

• We write:

<e, σ> ⇓ n

• To mean that e evaluates to n in state σ.

• This is a judgment. It asserts a relation 
between e, σ and n. 

• In this case we can view ⇓ as a function 
with two arguments (e and σ).



  

Operational Semantics

• This formulation is called natural 
operational semantics
– or big-step operational semantics

– the ⇓ judgment relates the expression and 
its “meaning”

• How should we define 

<e1 + e2, σ> ⇓ … ?



  

Notation: Rules of Inference

• We express the evaluation rules as rules of 
inference for our judgment
– called the derivation rules for the judgment
– also called the evaluation rules (for 

operational semantics)

• In general, we have one rule for each 
language construct:

<e1 + e2, σ> ⇓  n1 + n2

<e1, σ> ⇓ n1    <e2, σ> ⇓ n2 This is the only
rule for e1 + e2



  

Rules of Inference

Conclusion
Hypothesis1 … HypothesisN

Γ ` if b then e1 else e2 : τ
Γ ` b : bool     Γ ` e1 : τ     Γ ` e2 : τ

• For any given proof system, a finite 
number of rules of inference (or schema) 
are listed somewhere

• Rule instances should be easily checked
• What is the definition of “NP”?



  

Derivation

• Tree-structured (conclusion at bottom)
• May include multiple sorts of rules-of-

inference
• Could be constructed, typically are not
• Typically verified in polynomial time



  

Evaluation Rules (for Aexp)

<n, σ> ⇓ n <x, σ> ⇓ σ(x)

<e1 + e2, σ> ⇓ n1 + n2

<e1, σ> ⇓ n1     <e2, σ> ⇓ n2

<e1 - e2, σ> ⇓ n1 - n2

<e1, σ> ⇓ n1     <e2, σ> ⇓ n2

<e1 * e2, σ> ⇓ n1 * n2

<e1, σ> ⇓ n1     <e2, σ> ⇓ n2

• This is called structural operational semantics
– rules defined based on the structure of the expression

• These rules do not impose an order of evaluation!



  
(show: candidate Ç rule)

Evaluation Rules (for Bexp)

<true, σ> ⇓ true

<false, σ> ⇓ false

<b1 ∧ b2, σ> ⇓ true
<b1, σ> ⇓ true     <b2, σ> ⇓ true

<b1 ∧ b2, σ> ⇓ false
<b1, σ> ⇓ false

<b1 ∧ b2, σ> ⇓ false
<b2, σ> ⇓ false

<e1 = e2, σ> ⇓ n1 = n2

<e1, σ> ⇓ n1     <e2, σ> ⇓ n2

<e1 ≤ e2, σ> ⇓ n1 ≤ n2

<e1, σ> ⇓ n1     <e2, σ> ⇓ n2



  

How to Read the Rules?

• Forward (top-down) = inference 
rules
– if we know that the hypothesis 

judgments hold then we can infer that 
the conclusion judgment also holds

– If we know that                                   
<e1, σ> ⇓ 5 and                                   
<e2 , σ> ⇓ 7, then we can infer that       
<e1 + e2 , σ> ⇓ 12



  

How to Read the Rules?

• Backward (bottom-up) = evaluation rules
– Suppose we want to evaluate e1 + e2, i.e., find 

n s.t. e1 + e2 ⇓ n is derivable using the 
previous rules

– By inspection of the rules we notice that the 
last step in the derivation of e1 + e2 ⇓ n must 
be the addition rule
• the other rules have conclusions that would not 

match e1 + e2 ⇓ n 

• this is called reasoning by inversion on the 
derivation rules



  

Evaluation By Inversion

• Thus we must find n1 and n2 such that            
e1 ⇓ n1 and e2 ⇓ n2 are derivable
– This is done recursively

• If there is exactly one rule for each kind of 
expression we say that the rules are syntax-
directed
– At each step at most one rule applies
– This allows a simple evaluation procedure as 

above (recursive tree-walk) 
– True for our Aexp but not Bexp. Why?



  

Evaluation of Commands

• The evaluation of a Com may have side 
effects but has no direct result
– What is the result of evaluating a command ?

• The “result” of a Com is a new state: 

<c, σ> ⇓ σ’

– But the evaluation of Com might not 
terminate! Danger Will Robinson! (huh?)



  

Com Evaluation Rules 1

<skip, σ> ⇓ σ <c1 ; c2, σ> ⇓ σ’’
<c1, σ> ⇓ σ’     <c2, σ’> ⇓ σ’’

<if b then c1 else c2, σ> ⇓ σ’
<b, σ> ⇓ true     <c1, σ> ⇓ σ’

<if b then c1 else c2, σ> ⇓ σ’
<b, σ> ⇓ false     <c2, σ> ⇓ σ’



  

Com Evaluation Rules 2

Def: σ[x:= n](x) = n
σ[x:= n](y) = σ(y)<x := e, σ> ⇓ σ[x := n]

<e, σ> ⇓ n

• Let’s do while together



  

Com Evaluation Rules 3

<while b do c, σ> ⇓ σ
<b, σ> ⇓ false

Def: σ[x:= n](x) = n
σ[x:= n](y) = σ(y)<x := e, σ> ⇓ σ[x := n]

<e, σ> ⇓ n

<while b do c, σ > ⇓ σ’
<b, σ> ⇓ true   <c; while b do c, σ> ⇓ σ’



  

Homework

• Homework 1 Out Today
– Due In One Week

• Read at least 1 of these 3 Articles
– 1. Wegner's Programming Languages - The First 25 

years
– 2. Wirth's On the Design of Programming Languages
– 3. Nauer's Report on the algorithmic language 

ALGOL 60 

• Skim the optional reading – we’ll discuss opsem 
“in the wild” next time


