In Our Last Exciting Episode

Bug Bash by Hans Biordahl

http://www.hughash.net/

Lessons From Model Checking

- To find **bugs**, we need **specifications**
 - What are some good specifications?
- To convert a program into a model, we need predicates/invariants and a theorem prover.
 - What are important predicates? Invariants?
 - What should we track when reasoning about a program and what should we abstract?
 - How does a theorem prover work?
- Simple algorithms (e.g., depth first search, pushing facts along a CFG) can work well
 - ... under what circumstances?

The Big Lesson

 To reason about a program (= "is it doing the right thing? the wrong thing?") we must understand what the program means!

A Simple Imperative Language Operational Semantics (= "meaning")

Homework #0 Due Today

- Can't get BLAST to work?
 - Use power1.cs.virginia.edu
 - Plus the BLAST linux binaries
 - cp all of them (e.g., csi*, pblast*, ...) to ~/bin

Medium-Range Plan

- Study a simple imperative language IMP
 - Abstract syntax (today)
 - Operational semantics (today)
 - Denotational semantics
 - Axiomatic semantics
 - ... and relationships between various semantics (with proofs, peut-être)
 - Today: operational semantics
 - Follow along in Chapter 2 of Winskel

Syntax of IMP

- <u>Concrete syntax</u>: The rules by which programs can be expressed as strings of characters
 - Keywords, identifiers, statement separators vs. terminators (Niklaus!?), comments, indentation (Guido!?)
- Concrete syntax is important in practice
 - For readability (Larry!?), familiarity, parsing speed (Bjarne!?), effectiveness of error recovery, clarity of error messages (Robin!?)
- Well-understood principles
 - Use finite automata and context-free grammars
 - Automatic lexer/parser generators

(Note On Recent Research)

- If-as-and-when you find yourself making a new language, consider GLR (elkhound) instead of LALR(1) (bison)
- Scott McPeak, George G. Necula: *Elkhound: A Fast, Practical GLR Parser Generator*. CC 2004: pp. 73-88
- As fast as LALR(1), more natural, handles basically all of C++, etc.

Abstract Syntax

- We ignore parsing issues and study programs given as abstract syntax trees
 I provide the parser in the homework ...
- An abstract syntax tree is (a subset of) the parse tree of the program
 - Ignores issues like comment conventions
 - More convenient for formal and algorithmic manipulation
 - All research papers use ASTs, etc.

IMP Abstract Syntactic Entities

integer constants ($n \in \mathbb{Z}$) bool constants (true, false) locations of variables (x, y) arithmetic expressions (e) boolean expressions (b) commands (c)

- (these also encode the types)

• int

•

bool

Aexp

Bexp

Com

Abstract Syntax (Aexp)Arithmetic expressions (Aexp)

- e ::= n for $n \in \mathbb{Z}$ | x for $x \in L$ | $e_1 + e_2$ for $e_1, e_2 \in Aexp$ | $e_1 - e_2$ for $e_1, e_2 \in Aexp$ | $e_1 * e_2$ for $e_1, e_2 \in Aexp$
- Notes:
 - Variables are not declared
 - All variables have integer type
 - No side-effects (in expressions)

Abstract Syntax (Bexp)

- Boolean expressions (Bexp)
 - b ::= true I false $e_1 = e_2$ $| \mathbf{e}_1 \leq \mathbf{e}_2$ 1 – b $| b_1 \wedge b_2$ $| b_1 \vee b_2$

for e_1 , $e_2 \in Aexp$ for e_1 , $e_2 \in Aexp$ for $b \in Bexp$ for b_1 , $b_2 \in Bexp$ for b_1 , $b_2 \in Bexp$

"Boolean"

- George Boole - 1815-1864
- I'll assume you know boolean algebra ...

p	q	$p \land q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Abstract Syntax (Com)

- Commands (Com)
 - c ::= skip
 - | x := e
 - **C**₁; **C**₂
 - if b then c₁ else c₂ while b do c
- **x** \in **L** \land **e** \in **Aexp** $c_1, c_2 \in$ Com $c_1, c_2 \in$ Com \land **b** \in Bexp **c** \in Com \land **b** \in Bexp

- Notes:
 - The typing rules are embedded in the syntax definition
 - Other parts are not context-free and need to be checked separately (e.g., all variables are declared)
 - Commands contain all the side-effects in the language
 - Missing: pointers, function calls, what else?

Why Study Formal Semantics?

- Language design (denotational)
- Proofs of correctness (axiomatic)
- Language implementation (operational)
- Reasoning about programs
- Providing a clear behavioral specification
- "All the cool people are doing it."
 - You need this to understand PL research
- "First one's free."

Consider This Legal Java

```
x = 0;
try {
 x = 1;
 break mygoto;
} finally {
 x = 2;
 raise
  NullPointerException;
}
x = 3;
mygoto:
x = 4:
```

- What happens when you execute this code?
- Notably, what assignments are executed?

14.20.2 Execution of try-catch-finally

- A try statement with a finally block is executed by first executing the try block. Then there is a choice:
- If execution of the try block completes normally, then the finally block is executed, and then there is a choice:
 - If the finally block completes normally, then the try statement completes normally.
 - If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S.
- If execution of the try block completes abruptly because of a throw of a value V, then there is a choice:
 - If the run-time type of V is assignable to the parameter of any catch clause of the try statement, then the first (leftmost) such catch clause is selected. The value V is assigned to the parameter of the selected catch clause, and the *Block* of that catch clause is executed. Then there is a choice:
 - If the catch block completes normally, then the finally block is executed. Then there is a choice:
 - If the finally block completes normally, then the try statement completes normally.
 - If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason.
 - If the catch block completes abruptly for reason *R*, then the finally block is executed. Then there is a choice:
 - If the finally block completes normally, then the try statement completes abruptly for reason R.
 - If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is discarded).
 - If the run-time type of V is not assignable to the parameter of any catch clause of the try statement, then the finally block is executed. Then there is a choice:
 - If the finally block completes normally, then the try statement completes abruptly because of a throw of the value V.
 - If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and the throw of value V is discarded and forgotten).
- If execution of the try block completes abruptly for any other reason *R*, then the finally block is executed. Then there is a choice:
 - If the finally block completes normally, then the try statement completes abruptly for reason R.
 - If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is discarded).

Can't we just nail this somehow?

Ouch! Confusing.

- Wouldn't it be nice if we had some way of describing what a language (feature or program) means ...
 - More precisely than English
 - More compactly than English
 - So that you might build a compiler
 - So that you might prove things about programs

Analysis of IMP

- Questions to answer:
 - What is the "meaning" of a given IMP expression/command?
 - How would we go about evaluating IMP expressions and commands?
 - How are the evaluator and the meaning related?

Three Canonical Approaches

Operational

- How would I execute this?
- "Symbolic Execution"
- Axiomatic
 - What is true after I execute this?
- Denotational
 - What is this trying to compute?

An Operational Semantics

- Specifies how expressions and commands should be evaluated
- Depending on the form of the expression
 - 0, 1, 2, . . . don't evaluate any further.
 - They are <u>normal forms</u> or <u>values</u>.
 - $e_1 + e_2$ is evaluated by first evaluating e_1 to n_1 , then evaluating e_2 to n_2 . (post-order traversal)
 - The result of the evaluation is the literal representing $n_1 + n_2$.
 - Similarly for $e_1 * e_2$
- <u>Operational semantics</u> abstracts the execution of a concrete interpreter
 - Important keywords are colored & underlined in this class.

Semantics of IMP

- The meanings of IMP expressions depend on the values of variables
 - What does "x+5" mean? It depends on "x"!
- The value of variables at a given moment is abstracted as a function from L to \mathbb{Z} (a <u>state</u>)
 - If x = 8 in our state, we expect "x+5" to mean 13
- The set of all states is Σ = L $\rightarrow \mathbb{Z}$
- We shall use σ to range over Σ
 - σ , a state, maps variables to values

Program State

- The state σ is somewhat like "memory"
 - It holds the current values of all variables
 - Formally, $\sigma: L \to \mathbb{Z}$

Q: Advertising (782 / 842)

•Name 3 of the 12 *"magically delicious"* marshmallow types in Lucky Charms.

Q: Advertising (784 / 842)

 Commercials for this product featured a giant anthropomorphic pitcher that crashed through walls to deliver refreshment.

Q: Cartoons (682 / 842)

• Why is Gargamel trying to capture the Smurfs?

Notation: Judgment

• We write:

<e, σ> ↓ n

- To mean that e evaluates to n in state σ .
- This is a judgment. It asserts a relation between e, σ and n.
- In this case we can view \Downarrow as a function with two arguments (e and σ).

Operational Semantics

- This formulation is called <u>natural</u> <u>operational semantics</u>
 - or <u>big-step operational semantics</u>
 - the
 judgment relates the expression and its "meaning"

• How should we define $\langle e_1 + e_2, \sigma \rangle \downarrow \dots ?$

Notation: Rules of Inference

- We express the evaluation rules as <u>rules of</u> <u>inference</u> for our judgment
 - called the <u>derivation rules</u> for the judgment
 - also called the <u>evaluation rules</u> (for operational semantics)
- In general, we have one rule for each language construct:

$$\begin{array}{c} <\mathbf{e}_1, \, \sigma > \Downarrow \, \mathbf{n}_1 \quad <\mathbf{e}_2, \, \sigma > \Downarrow \, \mathbf{n}_2 \\ <\mathbf{e}_1 + \mathbf{e}_2, \, \sigma > \Downarrow \, \mathbf{n}_1 + \mathbf{n}_2 \end{array}$$

This is the only rule for $e_1 + e_2$

Rules of Inference Hypothesis₁ ... Hypothesis_N Conclusion

- $\Gamma \vdash b: bool \qquad \Gamma \vdash e1: \tau \qquad \Gamma \vdash e2: \tau$ $\Gamma \vdash if \ b \ then \ e1 \ else \ e2: \tau$
- For any given proof system, a finite number of rules of inference (or schema) are listed somewhere
- Rule instances should be easily checked
- What is the definition of "NP"?

Derivation

- Tree-structured (conclusion at bottom)
- May include multiple sorts of rules-ofinference
- Could be constructed, typically are not
- Typically verified in polynomial time

Evaluation Rules (for Aexp) <n, σ> ↓ n <x, σ> ↓ σ(x) $\langle e_1, \sigma \rangle \Downarrow n_1 \quad \langle e_2, \sigma \rangle \Downarrow n_2 \quad \langle e_1, \sigma \rangle \Downarrow n_1 \quad \langle e_2, \sigma \rangle \Downarrow n_2$ $\langle e_1 + e_2, \sigma \rangle \downarrow n_1 + n_2$ $\langle e_1 - e_2, \sigma \rangle \Downarrow n_1 - n_2$ $\langle e_1, \sigma \rangle \Downarrow n_1 \quad \langle e_2, \sigma \rangle \Downarrow n_2$ $\langle e_1 \ast e_2, \sigma \rangle \Downarrow n_1 \ast n_2$

- This is called <u>structural operational semantics</u>
 rules defined based on the structure of the expression
- These rules do not impose an order of evaluation!

Evaluation Rules (for Bexp)
$$< true, \sigma > \Downarrow true$$
 $< e_1, \sigma > \oiint n_1 \quad \langle e_2, \sigma > \oiint n_2$ $< true, \sigma > \Downarrow true$ $< e_1 \le e_2, \sigma > \oiint n_1 \le n_2$ $< e_1 \le e_2, \sigma > \oiint n_1 \quad \langle e_2, \sigma > \oiint n_2$ $< e_1, \sigma > \oiint n_1 \quad \langle e_2, \sigma > \oiint n_2$ $< false, \sigma > \Downarrow false$ $< e_1, \sigma > \oiint n_1 \quad \langle e_2, \sigma > \oiint n_2$ $< e_1 = e_2, \sigma > \Downarrow n_1 = n_2$ $< e_1 = e_2, \sigma > \Downarrow n_1 = n_2$ $< b_1, \sigma > \Downarrow false$ $< b_2, \sigma > \Downarrow false$ $< b_1, \sigma > \Downarrow false$ $< b_2, \sigma > \Downarrow false$ $< b_1, \sigma > \Downarrow true \quad \langle b_2, \sigma > \Downarrow true$ (show: candidate \lor rule) < b_1 \land b_2, \sigma > \Downarrow true

How to Read the Rules?

- Forward (top-down) = inference rules
 - if we know that the hypothesis judgments hold then we can infer that the conclusion judgment also holds
 - If we know that $\langle \mathbf{e}_1, \boldsymbol{\sigma} \rangle \Downarrow \mathbf{5}$ and $\langle \mathbf{e}_2, \boldsymbol{\sigma} \rangle \Downarrow \mathbf{7}$, then we can infer that $\langle \mathbf{e}_1 + \mathbf{e}_2, \boldsymbol{\sigma} \rangle \Downarrow \mathbf{12}$

How to Read the Rules?

- Backward (bottom-up) = evaluation rules
 - Suppose we want to evaluate $e_1 + e_2$, i.e., find n s.t. $e_1 + e_2 \Downarrow n$ is derivable using the previous rules
 - By inspection of the rules we notice that the last step in the derivation of $e_1 + e_2 \Downarrow n$ must be the addition rule
 - the other rules have conclusions that would not match $\mathbf{e}_1 + \mathbf{e}_2 \Downarrow \mathbf{n}$
 - this is called reasoning by <u>inversion</u> on the derivation rules

Evaluation By Inversion

- Thus we must find n_1 and n_2 such that $e_1 \Downarrow n_1$ and $e_2 \Downarrow n_2$ are derivable
 - This is done recursively
- If there is exactly one rule for each kind of expression we say that the rules are <u>syntax-</u> <u>directed</u>
 - At each step at most one rule applies
 - This allows a simple evaluation procedure as above (recursive tree-walk)
 - True for our Aexp but not Bexp. Why?

Evaluation of Commands

- The evaluation of a Com may have side effects but has no direct result
 - What is the result of evaluating a command ?

<c, **σ**> ↓ **σ**'

• The "result" of a Com is a new state:

 But the evaluation of Com might not terminate! Danger Will Robinson! (huh?)

Com Evaluation Rules 1 $\langle c_1, \sigma \rangle \Downarrow \sigma' \quad \langle c_2, \sigma' \rangle \Downarrow \sigma''$ <c₁; c₂, σ> ↓ σ" $\langle skip, \sigma \rangle \Downarrow \sigma$ $\langle b, \sigma \rangle \Downarrow \text{true} \langle c_1, \sigma \rangle \Downarrow \sigma'$ $\langle \text{if b then } c_1 \text{ else } c_2, \sigma \rangle \Downarrow \sigma'$ $\langle b, \sigma \rangle \Downarrow false \langle c_2, \sigma \rangle \Downarrow \sigma'$ $\langle \text{if b then } c_1 \text{ else } c_2, \sigma \rangle \Downarrow \sigma'$

Com Evaluation Rules 2

Def:
$$\sigma[x:=n](x) = n$$

 $\sigma[x:=n](y) = \sigma(y)$

• Let's do while together

Com Evaluation Rules 3

<e, σ> ↓ n <x := e, σ> ↓ σ[x := n]

Def: $\sigma[x:=n](x) = n$ $\sigma[x:=n](y) = \sigma(y)$

Homework

- Homework 1 Out Today
 - Due In One Week
- Read at least 1 of these 3 Articles
 - 1. Wegner's Programming Languages The First 25 years
 - 2. Wirth's On the Design of Programming Languages
 - 3. Nauer's Report on the algorithmic language ALGOL 60
- Skim the optional reading we'll discuss opsem "in the wild" next time