In Our Last Exciting Episode

1 CAN'T WAIT TO
SEE WHAT'S UP
WITH THIS NEW

TECHNOLOGY

ANNOUNCEMENT.

USABILITY TIME.

S0 TO USE THE
FEATURE, WHERE
WOULD YOU CLICK?

WILL WE SEE
NEW SCENMARIOST
NEW DEVICESY
CROUND-BREAKING

USER INTERFACES?

COLDER... COLDER...
WARMER....

Pua Pach bhv Hans BFamrdahl

I'D LIKE TO BEGIN
BY SHOWING THIS
BLOCK DIAGK.AM
OF OUR. PROFOSED
ARCHITECTURAL

WARMER...
WARMER... HOT/
HOT! SMOEIN" HOT!

—
=
il
—
'
=]
™
=]
L]
=
[}
)
-
]
]
nl
Fu)
L=y
(=]
—
L
=
(=
=]
[

pyright 2006 Hans Ejordahl

HE'S ALREADY
LOST ME.

1 [/ seveN SECONDS,

THAT'S A NEW
RECORD.

| THINK WE'RE
LEADING THE
WITHNESS A BIT.

"WOULD YOU SAY
THIS IS THE BEST

h++r = F YSwwen huabhash et X

Lessons From Model Checking

e To find bugs, we need specifications
- What are some good specifications?

e To convert a program into a model, we need
predicates/invariants and a theorem prover.

- What are important predicates? Invariants?

- What should we track when reasoning about a
program and what should we abstract?

- How does a theorem prover work?

e Simple algorithms (e.g., depth first search, pushing
facts along a CFG) can work well

- ... under what circumstances?

#2

The Blg Lesson

«To reason about a program
(= “is it doing the right
thing? the wrong thing?”)
we must understand what
the program means!

#3

A Simple Imperative Language
Operational Semantics
(= “meaning”™)

TM HUNGRY. L SURE., HELP YOURSELF, YOU CAN HAVE AN APPLE | | EVEN THOUGH WE'RE BOTH
AN T HAVE OR. AN ORANGE FROM THE | | TALKING ENGUISH, WE'RE
NOT SPEAKING THE SAME

LANGUAGE..

) f/ﬁ
£ o 0
)

Homework #0 Due Today

e Can't get BLAST to work?
- Use power1.cs.virginia.edu
- Plus the BLAST linux binaries
- ¢p all of them (e.g., csi*, pblast®, ...) to ~/bin

HOCUS-POCVS, I COMMAND My
@ACADABRA' T0 DO \TSEL@QMENORK
HoMENORK BE DONE!

(W

&

Medium-Range Plan

e Study a simple imperative language IMP
- Abstract syntax (today)
- Operational semantics (today)
- Denotational semantics
- Axiomatic semantics

- ... and relationships between various
semantics (with proofs, peut-étre)

- Today: operational semantics
e Follow along in Chapter 2 of Winskel

Syntax of IMP

e Concrete syntax: The rules by which programs can
be expressed as strings of characters

- Keywords, identifiers, statement separators vs.
terminators (Niklaus!?), comments, indentation
(Guido!?)

o Concrete syntax is important in practice

- For readability (Larry!?), familiarity, parsing speed
(Bjarne!?), effectiveness of error recovery, clarity
of error messages (Robin!?)

e Well-understood principles
- Use finite automata and context-free grammars
- Automatic lexer/parser generators

(Note On Recent Research)

e If-as-and-when you find yourself making a
new language, consider GLR (elkhound)
instead of LALR(1) (bison)

e Scott McPeak, George G. Necula:
Elkhound: A Fast, Practical GLR Parser
Generator. CC 2004: pp. 73-88

e As fast as LALR(1), more natural, handles
basically all of C++, etc. |

Abstract Syntax

e We ignore parsing issues and study
programs given as abstract syntax trees

- | provide the parser in the homework ...

e An abstract syntax tree is (a subset of) the
parse tree of the program

- Ignores issues like comment conventions

- More convenient for formal and algorithmic
manipulation

- All research papers use ASTs, etc.

IMP Abstract Syntactic Entities

e int integer constants (n [Z)

e bool bool constants (true, false)
o L locations of variables (x, y)
o Aexp arithmetic expressions (e)
e Bexp boolean expressions (b)

« COm commands (c)

- (these also encode the types)

Abstract Syntax (Aexp)

e Arithmetic expressions (Aexp)
e::=n forn O Z

X for x I L

e, +e, fore, e,]Aexp
e -e, fore, e,]Aexp

e, "e, fore, e,]Aexp

e Notes:
- Variables are not declared
- All variables have integer type
- No side-effects (in expressions)

Abstract Syntax (Bexp)

e Boolean expressions (Bexp)

b ::=true
false
e, =e,
e <e,
=D
b, O b,
b, Ob,

for e,, e, L1 Aexp

for e,, e, L1 Aexp
for b L Bexp
for b,, b, L1 Bexp

for b,, b, L1 Bexp

“Boolean” Jg;”’ oros o

« George Boole \——-;—CFW NO, MO, Yes

E S, NO,NO, NO,YES...
~ 1815-1864 5 T TE

e I’ll assume you
know boolean

algebra ...
P | PAQ
T T
T F F
F T F
F F F

Abstract Syntax (Com)

« Commands (Com)

c ::= skip
X:=e xOL O eJAexp
C,;C, c,,c,[1Com
if b then c, elsec, c,,c,l0Com [b[1Bexp
while b do ¢ cdCom [0 bOOBexp
e Notes:

- The typing rules are embedded in the syntax definition

- Other parts are not context-free and need to be checked
separately (e.g., all variables are declared)

- Commands contain all the side-effects in the language
- Missing: pointers, function calls, what else?

Why Study Formal Semantics?

e Language design (denotational)

e Proofs of correctness (axiomatic)

e Language implementation (operational)

e Reasoning about programs

e Providing a clear behavioral specification

e “All the cool people are doing it.”
- You need this to understand PL research

o “First one’s free.”

Consider This Legal Java

x = 0; « What happens when

try { you execute this
x=1; code?
break mygoto;

1 finally { . Not.ably, what
X = 2; assignments are
raise executed?

NullPointerException;

3

X = 3;

mygoto:

X = 4;

14.20.2 Execution of try-catch-finally

A tLy statement with a finally block is executed by first executing the try block. Then there is
a choice:

If execution of the try block completes normally, then the finally block is executed, and then
there is a choice:

- If the finally block completes normally, then the try statement completes normally.

- If the fiSnally block completes abruptly for reason S, then the try statement completes abruptly for
reason S.

If er>1<e.cution of the try block completes abruptly because of a throw of a value V, then there is
a choice:

- If the run-time type of V is assignable to the parameter of any catch clause of the try statement, then
the first (leftmost) such catch clause is selected. The value V is assiﬁned to the parameter of the
selected catch clause, and the Block of that catch clause is executed. Then there is a choice:

« If the catch block completes normally, then the finally block is executed. Then there is a choice:
If the finally block completes normally, then the try statement completes normally.
If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason.

» If the catch block completes abruptly for reason R, then the finally block is executed. Then there is a choice:
If the finally block completes normally, then the try statement completes abruptly for reason R.

Ic}‘_the cfjincij\)lly block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is
iscarded).

If the run-time type of V is not assignable to the parameter of any catch clause of the try statement,
then the finally block is executed. Then there is a choice:

. I\ﬁ the finally block completes normally, then the try statement completes abruptly because of a throw of the value

« If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and
the throw of value V is discarded and forgotten).

If execution of the try block completes abruptly for any other reason R, then the finally block
is executed. Then there is a choice:

- If the finally block completes normally, then the try statement completes abruptly for reason R.

- If the finally block completes abruptly for reason S, then the try statement completes abruptly for
reason S (and reason R is discarded).

Can’t we just nail this somehow?

Ouch! Confusing.

e Wouldn’t it be nice if we had some way of
describing what a language (feature or
program) means ...

- More precisely than English
- More compactly than English
- So that you might build a compiler

- So that you might prove things about
programs

Analysis of IMP

e Questions to answer:

- What is the “meaning” of a given IMP

expression/command?

- How would we go about evaluating IMP expressions

and commands?

- How are the evaluator and the meaning related?

Three Canonical Approaches

e Operational

LIO}?’E}
- How would | execute this? Alexas eR

- “Symbolic Execution”

e Axiomatic

- What is true after |
execute this?

e Denotational

- What is this trying to
compute?

Trae Book of turee

An Operational Semantics

o Specifies how expressions and commands should be
evaluated

e Depending on the form of the expression
- 0,1, 2,...don’t evaluate any further.
e They are normal forms or values.
- e, + e, is evaluated by first evaluating e, to n, , then
evaluating e, to n,. (post-order traversal)

« The result of the evaluation is the literal representing n, + n,.
- Similarly for e, * e,

 Operational semantics abstracts the execution of a
concrete interpreter

- Important keywords are colored & underlined in this class.

Semantics of IMP

e The meanings of IMP expressions depend on the
values of variables

- What does “x+5” mean? It depends on “x

e The value of variables at a given moment is
abstracted as a function from L to Z (a state)

)
!

- If x = 8 in our state, we expect “x+5” to mean 13
e The set of all statesis2 =L - Z

 We shall use o to range over >
- 0, a state, maps variables to values

Program State

e The state o is somewhat like “memory”
- |t holds the current values of all variables

TR

- Formally, 0 : L - Z | [l st e] et

You are not authorized to remember this answer,

Q: Advertising (782 / 842)

Name 3 of the 12
"magically delicious”
marshmallow types in
Lucky Charms.

Q: Advertising (784 / 842)

e Commercials for this
product featured a giant
anthropomorphic pitcher
that crashed through walls
to deliver refreshment.

Q: Cartoons (682 / 842)

e Why is Gargamel trying to
capture the Smurfs?

Notation: Judgment

e We write:

<e, 0>[n

e To mean that e evaluates to n in state o.

e This is a judgment. It asserts a relation
between e, o and n.

e |In this case we can view [as a function
with two arguments (e and o).

Operational Semantics

e This formulation is called natural
operational semantics

- or big-step operational semantics

- the [J judgment relates the expression and
its “meaning”

« How should we define

<e, +e,, 0> [..7

Notation: Rules of Inference

 We express the evaluation rules as rules of
inference for our judgment

- called the derivation rules for the judgment

- also called the evaluation rules (for
operational semantics)

e In general, we have one rule for each
language construct:

<€, 0~ N n, <&, 0> N n, | This is the only
<e, +e,, 0> B n, + n, rule for e, + e,

Rules of Inference
Hypothesis, ... Hypothesis,

Conclusion

[Fb:bool TTFel:1T TkFe2:T1

[~ifbthenelelsee?: T

e For any given proof system, a finite
number of rules of inference (or schema)
are listed somewhere

e Rule instances should be easily checked
e What is the definition of “NP”?

Derivation

['(z) = int "
. . var in
['(x) = int . [(x) = int ['Fa:nt ['F1:mt
var int — var , sub
['For:int ['F3:nt ['Fz:int ['Fae—-1:int |
gt assign
['Fa>3:bool [Fri=10-1

while

['Fwhilex >3 doxz:=x—1 done

e Tree-structured (conclusion at bottom)

e May include multiple sorts of rules-of-
inference

e Could be constructed, typically are not
 Typically verified in polynomial time

Evaluation Rules (for Aexp)

<n, 0> n <x, 0> [0 o(x)

<e,,0>[ln, <e,,o>l0n, <e,o>ln, <e, 0>0lln,

<e,,0>[ln, <e,, 0>0lln,
<e; *e,,0>0n, * n,
e This is called structural operational semantics
- rules defined based on the structure of the expression

e These rules do not impose an order of evaluation!

Evaluation Rules (for Bexp)

<e,, 0> ln, <e,, 0>Lln,

<true, o> Utrue <e;<e,,0>Un, < n,

<e,,0>[ln, <e,, 0>[ln,

<false, o> Ofalse <e,=e,, 0> 0n, = n,
<b,, o> O false <b,, 0> O false
<b, Ob,, o> Ofalse <b, Ob,, o> Ofalse

<b,, 0> Otrue <b,, 0> [true
y<b; Ub,, 0> Utrue

(show: candidate V rule

How to Read the Rules?

e Forward (top-down) = inference

rules

- if we know that the hypothesis
judgments hold then we can infer that
the conclusion judgment also holds

- If we know that

<e, 0>
<e,, 0>

5 and
7/, then we can infer that

<e, +e,,0>0112

How to Read the Rules?

e Backward (bottom-up) = evaluation rules

- Suppose we want to evaluate e, + e,, i.e., find

ns.t. e, + e, [Inis derivable using the
previous rules

- By inspection of the rules we notice that the
last step in the derivation of e, + e, [1n must

be the addition rule

e the other rules have conclusions that would not
match e, + e, [In

e this is called reasoning by inversion on the
derivation rules

Evaluation By Inversion

« Thus we must find n, and n, such that
e, Un, and e, [1n, are derivable
- This is done recursively

o If there is exactly one rule for each kind of
expression we say that the rules are syntax-

directec
- At each step at most one rule applies

- This allows a simple evaluation procedure as
above (recursive tree-walk)

- True for our Aexp but not Bexp. Why?

Evaluation of Commands

e The evaluation of a Com may have side
effects but has no direct result

- What is the result of evaluating a command ?
e The “result” of a Com is a new state:

<c, 0> o

)

- But the evaluation of Com might not
terminate! Danger Will Robinson! (huh?)

Com Evaluation Rules 1

<¢,,o0>do <, 0>00"

<skip, 0> o <C,. C,,0> 0"

<b, 0> Otrue <c,o0>00

<if b thenc, else c,, 0> 00

<b, o> Ofalse <«c,, 0> 00

<if b thenc, else c,, 0> 00

Com Evaluation Rules 2

<e, 0> Ln Def: o[x:=n](x) =n

<x :=e, 0> 0o[x :=n] o[x:= n](y) = a(y)

e Let’s do while together

Com Evaluation Rules 3

<e, 0> n Def: o[x:=n](x) =n

<x :=e, 0> 0o[x :=n] o[x:= n](y) = a(y)

<b, o> [false

<while bdo ¢, o> o

<b, o> Otrue <c; whilebdoc, o> 0o’
<while bdoc, o> 00’

Homework

« Homework 1 Out Today
- Due In One Week

e« Read at least 1 of these 3 Articles

- 1. Wegner's Programming Languages - The First 25
years

- 2. Wirth's On the Design of Programming Languages

- 3. Nauer's Report on the algorithmic language
ALGOL 60

e Skim the optional reading - we’ll discuss opsem
“in the wild” next time

