
#1

In Our Last Exciting Episode

#2

Lessons From Model Checking
• To find bugs, we need specifications

– What are some good specifications?
• To convert a program into a model, we need

predicates/invariants and a theorem prover.
– What are important predicates? Invariants?
– What should we track when reasoning about a

program and what should we abstract?
– How does a theorem prover work?

• Simple algorithms (e.g., depth first search, pushing
facts along a CFG) can work well
– ... under what circumstances?

#3

The Big Lesson

•To reason about a program
(= “is it doing the right
thing? the wrong thing?”)
we must understand what
the program means!

A Simple Imperative Language
Operational Semantics

(= “meaning”)

Homework #0 Due Today

• Can't get BLAST to work?
– Use power1.cs.virginia.edu
– Plus the BLAST linux binaries
– cp all of them (e.g., csi*, pblast*, ...) to ~/bin

Medium-Range Plan
• Study a simple imperative language IMP

– Abstract syntax (today)
– Operational semantics (today)
– Denotational semantics
– Axiomatic semantics
– … and relationships between various

semantics (with proofs, peut-être)
– Today: operational semantics

•Follow along in Chapter 2 of Winskel

Syntax of IMP
• Concrete syntax: The rules by which programs can

be expressed as strings of characters
– Keywords, identifiers, statement separators vs.

terminators (Niklaus!?), comments, indentation
(Guido!?)

• Concrete syntax is important in practice
– For readability (Larry!?), familiarity, parsing speed

(Bjarne!?), effectiveness of error recovery, clarity
of error messages (Robin!?)

• Well-understood principles
– Use finite automata and context-free grammars
– Automatic lexer/parser generators

(Note On Recent Research)

• If-as-and-when you find yourself making a
new language, consider GLR (elkhound)
instead of LALR(1) (bison)

• Scott McPeak, George G. Necula:
Elkhound: A Fast, Practical GLR Parser
Generator. CC 2004: pp. 73-88

• As fast as LALR(1), more natural, handles
basically all of C++, etc.

Abstract Syntax

• We ignore parsing issues and study
programs given as abstract syntax trees
– I provide the parser in the homework …

• An abstract syntax tree is (a subset of) the
parse tree of the program
– Ignores issues like comment conventions
– More convenient for formal and algorithmic

manipulation
– All research papers use ASTs, etc.

IMP Abstract Syntactic Entities

• int integer constants (n ∈ Z)

• bool bool constants (true, false)
• L locations of variables (x, y)
• Aexp arithmetic expressions (e)
• Bexp boolean expressions (b)
• Com commands (c)

– (these also encode the types)

Abstract Syntax (Aexp)
• Arithmetic expressions (Aexp)

 e ::= n for n ∈ Z

 | x for x ∈ L

 | e1 + e2 for e1, e2 ∈ Aexp

 | e1 - e2 for e1, e2 ∈ Aexp

 | e1 * e2 for e1, e2 ∈ Aexp

• Notes:
– Variables are not declared
– All variables have integer type
– No side-effects (in expressions)

Abstract Syntax (Bexp)
• Boolean expressions (Bexp)
 b ::= true
 | false

 | e1 = e2 for e1, e2 ∈ Aexp

 | e1 ≤ e2 for e1, e2 ∈ Aexp

 | ¬ b for b ∈ Bexp

 | b1 ∧ b2 for b1, b2 ∈ Bexp

 | b1 ∨ b2 for b1, b2 ∈ Bexp

“Boolean”

• George Boole
– 1815-1864

• I’ll assume you
know boolean
algebra …

Abstract Syntax (Com)
• Commands (Com)
 c ::= skip
 | x := e x∈L ∧ e∈Aexp
 | c1 ; c2 c1,c2∈Com

 | if b then c1 else c2 c1,c2∈Com ∧ b∈Bexp

 | while b do c c∈Com ∧ b∈Bexp
• Notes:

– The typing rules are embedded in the syntax definition
– Other parts are not context-free and need to be checked

separately (e.g., all variables are declared)
– Commands contain all the side-effects in the language
– Missing: pointers, function calls, what else?

Why Study Formal Semantics?

• Language design (denotational)
• Proofs of correctness (axiomatic)
• Language implementation (operational)
• Reasoning about programs
• Providing a clear behavioral specification
• “All the cool people are doing it.”

– You need this to understand PL research
• “First one’s free.”

Consider This Legal Java

x = 0;
try {
 x = 1;
 break mygoto;
} finally {
 x = 2;
 raise

NullPointerException;
}
x = 3;
mygoto:
x = 4;

• What happens when
you execute this
code?

• Notably, what
assignments are
executed?

14.20.2 Execution of try-catch-finally
• A try statement with a finally block is executed by first executing the try block. Then there is

a choice:
• If execution of the try block completes normally, then the finally block is executed, and then

there is a choice:
– If the finally block completes normally, then the try statement completes normally.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for

reason S.
• If execution of the try block completes abruptly because of a throw of a value V, then there is

a choice:
– If the run-time type of V is assignable to the parameter of any catch clause of the try statement, then

the first (leftmost) such catch clause is selected. The value V is assigned to the parameter of the
selected catch clause, and the Block of that catch clause is executed. Then there is a choice:

• If the catch block completes normally, then the finally block is executed. Then there is a choice:
– If the finally block completes normally, then the try statement completes normally.
– If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason.

• If the catch block completes abruptly for reason R, then the finally block is executed. Then there is a choice:
– If the finally block completes normally, then the try statement completes abruptly for reason R.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is

discarded).

– If the run-time type of V is not assignable to the parameter of any catch clause of the try statement,
then the finally block is executed. Then there is a choice:

• If the finally block completes normally, then the try statement completes abruptly because of a throw of the value
V.

• If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and
the throw of value V is discarded and forgotten).

• If execution of the try block completes abruptly for any other reason R, then the finally block
is executed. Then there is a choice:

– If the finally block completes normally, then the try statement completes abruptly for reason R.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for

reason S (and reason R is discarded).

Can’t we just nail this somehow?Can’t we just nail this somehow?

Ouch! Confusing.

• Wouldn’t it be nice if we had some way of
describing what a language (feature or
program) means …
– More precisely than English
– More compactly than English
– So that you might build a compiler
– So that you might prove things about

programs

Analysis of IMP

• Questions to answer:

– What is the “meaning” of a given IMP

expression/command?

– How would we go about evaluating IMP expressions

and commands?

– How are the evaluator and the meaning related?

Three Canonical Approaches

• Operational
– How would I execute this?
– “Symbolic Execution”

• Axiomatic
– What is true after I

execute this?

• Denotational
– What is this trying to

compute?

An Operational Semantics

• Specifies how expressions and commands should be
evaluated

• Depending on the form of the expression
– 0, 1, 2, . . . don’t evaluate any further.

• They are normal forms or values.
– e1 + e2 is evaluated by first evaluating e1 to n1 , then

evaluating e2 to n2 . (post-order traversal)
• The result of the evaluation is the literal representing n1 + n2.

– Similarly for e1 * e2

• Operational semantics abstracts the execution of a
concrete interpreter
– Important keywords are colored & underlined in this class.

Semantics of IMP

• The meanings of IMP expressions depend on the
values of variables
– What does “x+5” mean? It depends on “x”!

• The value of variables at a given moment is
abstracted as a function from L to Z (a state)

– If x = 8 in our state, we expect “x+5” to mean 13

• The set of all states is Σ = L → Z

• We shall use σ to range over Σ
– σ, a state, maps variables to values

Program State

• The state σ is somewhat like “memory”
– It holds the current values of all variables

– Formally, σ : L → Z

Q: Advertising (782 / 842)

•Name 3 of the 12
"magically delicious"
marshmallow types in
Lucky Charms.

Q: Advertising (784 / 842)

•Commercials for this
product featured a giant
anthropomorphic pitcher
that crashed through walls
to deliver refreshment.

Q: Cartoons (682 / 842)

•Why is Gargamel trying to
capture the Smurfs?

Notation: Judgment

• We write:

<e, σ> ⇓ n

• To mean that e evaluates to n in state σ.

• This is a judgment. It asserts a relation
between e, σ and n.

• In this case we can view ⇓ as a function
with two arguments (e and σ).

Operational Semantics

• This formulation is called natural
operational semantics
– or big-step operational semantics

– the ⇓ judgment relates the expression and
its “meaning”

• How should we define

<e1 + e2, σ> ⇓ … ?

Notation: Rules of Inference

• We express the evaluation rules as rules of
inference for our judgment
– called the derivation rules for the judgment
– also called the evaluation rules (for

operational semantics)

• In general, we have one rule for each
language construct:

<e1 + e2, σ> ⇓ n1 + n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2 This is the only
rule for e1 + e2

Rules of Inference

Conclusion
Hypothesis1 … HypothesisN

Γ ` if b then e1 else e2 : τ
Γ ` b : bool Γ ` e1 : τ Γ ` e2 : τ

• For any given proof system, a finite
number of rules of inference (or schema)
are listed somewhere

• Rule instances should be easily checked
• What is the definition of “NP”?

Derivation

• Tree-structured (conclusion at bottom)
• May include multiple sorts of rules-of-

inference
• Could be constructed, typically are not
• Typically verified in polynomial time

Evaluation Rules (for Aexp)

<n, σ> ⇓ n <x, σ> ⇓ σ(x)

<e1 + e2, σ> ⇓ n1 + n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

<e1 - e2, σ> ⇓ n1 - n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

<e1 * e2, σ> ⇓ n1 * n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

• This is called structural operational semantics
– rules defined based on the structure of the expression

• These rules do not impose an order of evaluation!

(show: candidate Ç rule)

Evaluation Rules (for Bexp)

<true, σ> ⇓ true

<false, σ> ⇓ false

<b1 ∧ b2, σ> ⇓ true
<b1, σ> ⇓ true <b2, σ> ⇓ true

<b1 ∧ b2, σ> ⇓ false
<b1, σ> ⇓ false

<b1 ∧ b2, σ> ⇓ false
<b2, σ> ⇓ false

<e1 = e2, σ> ⇓ n1 = n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

<e1 ≤ e2, σ> ⇓ n1 ≤ n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

How to Read the Rules?

• Forward (top-down) = inference
rules
– if we know that the hypothesis

judgments hold then we can infer that
the conclusion judgment also holds

– If we know that
<e1, σ> ⇓ 5 and
<e2 , σ> ⇓ 7, then we can infer that
<e1 + e2 , σ> ⇓ 12

How to Read the Rules?

• Backward (bottom-up) = evaluation rules
– Suppose we want to evaluate e1 + e2, i.e., find

n s.t. e1 + e2 ⇓ n is derivable using the
previous rules

– By inspection of the rules we notice that the
last step in the derivation of e1 + e2 ⇓ n must
be the addition rule
• the other rules have conclusions that would not

match e1 + e2 ⇓ n

• this is called reasoning by inversion on the
derivation rules

Evaluation By Inversion

• Thus we must find n1 and n2 such that
e1 ⇓ n1 and e2 ⇓ n2 are derivable
– This is done recursively

• If there is exactly one rule for each kind of
expression we say that the rules are syntax-
directed
– At each step at most one rule applies
– This allows a simple evaluation procedure as

above (recursive tree-walk)
– True for our Aexp but not Bexp. Why?

Evaluation of Commands

• The evaluation of a Com may have side
effects but has no direct result
– What is the result of evaluating a command ?

• The “result” of a Com is a new state:

<c, σ> ⇓ σ’

– But the evaluation of Com might not
terminate! Danger Will Robinson! (huh?)

Com Evaluation Rules 1

<skip, σ> ⇓ σ <c1 ; c2, σ> ⇓ σ’’
<c1, σ> ⇓ σ’ <c2, σ’> ⇓ σ’’

<if b then c1 else c2, σ> ⇓ σ’
<b, σ> ⇓ true <c1, σ> ⇓ σ’

<if b then c1 else c2, σ> ⇓ σ’
<b, σ> ⇓ false <c2, σ> ⇓ σ’

Com Evaluation Rules 2

Def: σ[x:= n](x) = n
σ[x:= n](y) = σ(y)<x := e, σ> ⇓ σ[x := n]

<e, σ> ⇓ n

• Let’s do while together

Com Evaluation Rules 3

<while b do c, σ> ⇓ σ
<b, σ> ⇓ false

Def: σ[x:= n](x) = n
σ[x:= n](y) = σ(y)<x := e, σ> ⇓ σ[x := n]

<e, σ> ⇓ n

<while b do c, σ > ⇓ σ’
<b, σ> ⇓ true <c; while b do c, σ> ⇓ σ’

Homework

• Homework 1 Out Today
– Due In One Week

• Read at least 1 of these 3 Articles
– 1. Wegner's Programming Languages - The First 25

years
– 2. Wirth's On the Design of Programming Languages
– 3. Nauer's Report on the algorithmic language

ALGOL 60

• Skim the optional reading – we’ll discuss opsem
“in the wild” next time

