
CS615 — Homework Assignment 3

Exercise 1: Bookkeeping. How long did this take you? Was it easy?
Tell me something about yourself that I do not already know. All non-empty
answers receive full credit.

Exercise 2: Read Abstraction Mechanisms in CLU by Liskov et al. and
then read What is “Object-Oriented Programming”? by Stroustrup. Write
a formal reaction to the two articles. Your writeup should not exceed four
paragraphs. Write as if you were writing the motivation section or related
work section for a paper submission (perhaps a paper proposing a new notion
of “abstraction” that must highlight the pros and cons of previous efforts).
Email your writeup to me as a flat ASCII text file.

Exercise 3: Regular Expressions are commonly used as abstractions for
string matching. Here is an abstract grammar for regular expressions:

r ::= ”x” singleton – matches the character x
| empty skip – matches the empty string
| r1 r2 concatenation – matches r1 followed by r2

| r1 | r2 or – matches r1 or r2

| r∗ Kleene star – matches 0 or more occurences of r

| . matches any single character
| [”x”− ”y”] matches any character between x and y inclusive
| r+ matches 1 or more occurences of r
| r? matches 0 or 1 occurence of r

We will call the first five cases the primary forms of regular expressions. The
last four cases can be defined in terms of the first five. We also give an
abstract grammar for strings (modeled as lists of characters):

s ::= nil empty string
| ”x” :: s string with first character x and other characters s

We write ”bye” as shorthand for ”b” :: ”y” :: ”e” :: nil. This exercise
requires you to give large-step operational semantics rules of inference related
to regular expressions matching strings. We introduce a judgment:

` r matches s leaving s′
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The interpretation of the judgment is that the regular expression r matches
some prefix of the string s, leaving the suffix s′ unmatched. If s′ = nil then
r matched s exactly. Examples:

` ”h”(”e”+) matches ”hello” leaving ”llo”

Note that this operational semantics may be considered non-deterministic
because we expect to be able to derive all three of the following:

` (”h” | ”e”)∗ matches ”hello” leaving ”ello”
` (”h” | ”e”)∗ matches ”hello” leaving ”hello”
` (”h” | ”e”)∗ matches ”hello” leaving ”llo”

Here are two rules of inference:

s = ”x” :: s′

` ”x” matches s leaving s′ ` empty matches s leaving s

Give large-step operational semantics rules of inference for the other three
primal regular expressions.

Exercise 4: We will use denotational semantics to model the fact that a
regular expression can match a string leaving many possible suffices. Let S
be the set of all strings, let P(S) be the powerset of S, and let RE range over
regular expressions. We introduce a semantic function:

R : RE → (S → P(S))

The interpretation is that R(r) is a function that takes in a string-to-be-
matched and returns a set of suffices. We might intuitively define R as
follows:

R[[ r ]](s) = {s′ | ` r matches s leaving s′}
In general, however, one should not define the denotational semantics in
terms of the operational semantics. Here are two correct semantic functions:

R[[ ”x” ]](s) = {s′ | s = ”x” :: s′}
R[[ empty ]](s) = {s}

Give the denotational semantics functions for the other three primal regular
expressions. Your semantics functions may not reference the operational
semantics.

Exercise 5: We want to update our operational semantics for regular ex-
pressions to capture multiple suffices. We want our new operational seman-
tics to be deterministic — it should give the same the same answer as the
denotational semantics above. We introduce a new judgment:

` r matches s leaving S
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And use rules of inference like the following:

` ”x” matches s leaving {s′ | s = ”x” :: s′} ` empty matches s leaving {s}

` r1 matches s leaving S ` r2 matches s leaving S ′

` r1 | r2 matches s leaving S ∪ S ′

You must do one of the following:

• either give operational semantics rules of inference for r∗ and r1r2.
Your opsem rules may not reference the denotational semantics. You
may not place a derivation inside a set constructor, as in: {x | ∃y. `
r matches x leaving y}. Each inference rules must have a finite and
fixed set of hypotheses.

• or argue in one or two sentences that it cannot be done correctly in the
given framework. Back up your argument by presenting two attempted
but “wrong” rules of inference and show that each one is either unsound
or incomplete with respect to our intuitive notion of regular expression
matching.

Part of doing research is getting stuck. When you get stuck, you must be
able to recognize whether “you are just missing something” or “the problem
is actually impossible”.

Exercise 6: Optional. In the class notes (but not, alas, in class) we
defined an equivalence relation c1 ∼ c2 for IMP commands. Computing
equivalence turned out to be undecideable: c ∼ c iff c halts. We can
define a similar equivalence relation for regular expressions: r1 ∼ r2 iff
∀s ∈ S. R[[ r1 ]](s) = R[[ r2 ]](s). You must either claim that r1 ∼ r2 is un-
decideable by reducing it to the halting problem or explain in two or three
sentences how to compute it or write “I choose not to do this problem” (you
will receive full credit). You may assume that I am familiar with the relevant
literature.

Exercise 7: Download the Homework 3 code pack from the course web
page. Write an interpreter for regular expressions based on the denotational
semantics. In particular, you must write a function matches : RE → S →
P(S). Your interpreter must handle all of the regular expression forms, not
just the primal ones.

Exercise 8: Submit an example-re file according to the instructions in
the code pack.
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