Securlty Analyses ,
nf,l iz Leizy Sugss J—‘J’J

// BATMAN Sucks

One-Slide Summary

e We can statically detect buffer overruns in
programs by modeling the space allocated for
a buffer and the space used for a buffer. We
cannot be right all the time.

e SQL injection and cross-site scripting attacks
occur when evil user input is used (parsed) as
part of another important language (e.g.,
HTML or SQL).

e Program analyses are expensive; recent
research can randomize them to save time.

#2

Lecture Outline

e Static Analyses to Detect Buffer Overruns
- Strings
- Alloc, Used
- Constraints
e SQL Injection Attacks
- Untrusted User Strings
- Interpreted as valid SQL
 Randomized Dataflow Analysis
- Random Join

#3

Static Analysis to
Detect Buffer Overruns

e Detecting buffer overruns before distributing
code would be better

 Idea: Build a tool similar to a type checker to
detect buffer overruns

e This is a popular research area; we’ll present
one idea at random [Wagner, Aiken, ...]

- You’ll see more in later lectures

#4

Focus on Strings

e Most important buffer overrun exploits are
through string buffers

- Reading an untrusted string from the network,
keyboard, etc.

e Focus the tool only on arrays of characters

#5

ldea 1: Strings as an
Abstract Data Type

e A problem: Pointer operations and array
dereferences are very difficult to analyze
statically

- Where does *ptr point?
- What does buf[j] refer to?

e Idea: Model effect of string library functions
directly

- Hard code effect of strcpy, strcat, etc.

#6

ldea 2: The Abstraction

e Model buffers as pairs of integer ranges
- Alloc min allocated size of the buffer in bytes
- Used max number of bytes actually in use

e Use integer ranges

- [X)y] = { X, X+1’ coey y'1) y}
- Alloc and used cannot be computed exactly

#7

The Strategy

e For each program expression, write
constraints capturing the alloc and used of its
string subexpressions

e Solve the constraints for the entire program

e Check for each string variable s
used(s) < alloc(s)

#8

The Constraints

char s[n];
strcpy(dst,src)

p = strdup(s)

p[n] = \O’

n = alloc(s)
used(src) < used(dst)

used(s) < used(p) &
alloc(s) < alloc(p)

min(used(p),n+1)) <
used(p)

#9

Constraint Solving

 Solving the constraints is akin to solving
dataflow equations

- Remember liveness? Constant prop?
e Build a graph

- Nodes are len(s), alloc(s)

- Edges are constraints len(s) < len(t)

e Pro

gra
-5

pagate information forward through the
dh

pecial handling of loops in the graph

#10

Results

e This technique found new buffer overruns in
sendmail

- Which is like shooting fish in a barrel ...

e Found new exploitable overruns in Linux
nettools package

e Both widely used
e Previously hand-audited packages

Limitations

e Tool produces many false positives (why?)
- 1 out of 10 warnings is a real bug

e Tool has false negatives (why?)
- Unsound: may miss some overruns

 But still productive to use
e S0 let's pretend we used it ...

#12

Cat and Mouse

e Suppose | have a server (e.g., Amazon.com)

e Let's imagine that | have solved ...
- Viruses: no malicious code on machine
- Buffer overruns: no injection of evil assembly code
- Buffer overruns: no non-control data attacks
- Privileges: no running at root
- Spam: as long as I'm dreaming, I'd like a pony ...
e | can still convince the server to do the wrong

thing with the resources it legitimately has
access to ...

#13

Three-Tier Web Application

Presentation tier

e This is how
Amazon is
structured

e Query is a

processes commands, makes logical

S QL decisions and evaluations, and performs
calculations. It also moves and processes
data between the two surrounding layers.

database

command Data i
H fi ' d and retrisved

gene rated from a database or fle system. The

by program

[]
logic

user interface. The main function of the

interface is to translate tasks and results to

something the user can understand

Logic tier

tier for processing, and then eventually
back to the user.

The top-most level of the application is the

information is then passed back to the logic

A
GET LIST OF ALL ADDALL SALES
SALES MADE TOGETHER
LAST YEAR
SALE 1
SALE 2
SALE 3
SALE 4
s
-
Storage

Database

The Problem In The Logic Tier

|$Suserid = read from network(); |

if ('eregi('[0-9]+', Suserid)) {
unp msg('You entered an invalid user ID.');
exit;

“WHERE userid='Suserid'”) ;

|
|
|
| :
| |
| |
| |
| |
| |
I i
| :
| $user = $DB->query (“SELECT * FROM ‘unp user'”. |
|
|
: .
|
\if (!'DB->is single row($user)) { |
: unp msg('You entered an invalid user ID.'); |
[exit; :
|

|
| :

o e o e o o o S O S S S S S B B BN EEE B BN B EEE BN EEE BN EEE BN BEE B BEE B BEE B BEE B BEE B B B B B Eae e .

The Problem

[m—— e — - = == —

Suserid = read from network() ;

if ('eregi('[0-9]+', Suserid)) {

unp;msg(LESEJF\tQ£S§ an invalid user ID.');
exit;

} Matches any string that
suser = sp CONtains a sequence of
digits...

user ”.

:ld' //) .

if ('DB->is single row(Suser)) {

exit;

unp msg('You entered an invalid user ID.');

o e o e o o o S O S S S S S B B BN EEE B BN B EEE BN EEE BN EEE BN BEE B BEE B BEE B BEE B BEE B B B B B Eae e .

The Bad Place

et e e

1// $userid == “1'; DROP TABLE unp user; --"

if ('eregi('[0-9]+', Suserid)) {
unp msg('You entered an invalid user ID.');
exit;

}

$user = $DB->query (“SELECT * FROM "unp user ”.
“WHERE userid='Suserid'”) ;

if ('DB->is single row(Suser)) {
unp msg('You entered an invalid user ID.');
exit;

e e e e o o o S S S S S B S B BN BN BN B BN EEE BN EEE B EEE BN EEE B BEE B BEE B BEE B B B B e e e .

The Bad Place: Destroymg Data

;g SELECT * FROM unp_user
WHERE userid='1l"';
DROP TABLE unp user;

“WHERE userid='Suserid'”) ;

|
! :
I |
I |
I |
I |
I |
I |
I |
! :
\$useér = $D5—~__ [SELECT * FROM unp_user ”. |
: !
! :
\if (!'DB->is single row($user)) { |
: unp msg('You entered an invalid user ID.'); |
I exit; :
|

! :

o e o e o o o S O S S S S S B B BN EEE B BN B EEE BN EEE BN EEE BN BEE B BEE B BEE B BEE B BEE B B B B B Eae e .

Also A Bad Place Vlewmg Data

;g SELECT * FROM \IID${_FHSGHT\
WHERE userid='1l"
OR 1 =1

“WHERE userid='Suserid'”) ;

|
! :
I |
I |
I |
I |
I |
I |
I |
! :
\$useér = $D5—~__ [SELECT * FROM unp_user ”. |
: !
! :
\if (!'DB->is single row($user)) { |
: unp msg('You entered an invalid user ID.'); |
I exit; :
|

! :

o e o e o o o S O S S S S S B B BN EEE B BN B EEE BN EEE BN EEE BN BEE B BEE B BEE B BEE B BEE B B B B B Eae e .

SQL Code-Injection Vulnerabilities

« A SQL injection attack exploits a vulnerability
in the database layer of an application
whereby user input is incorrectly filtered for
string literal escape characters or otherwise
unexpected executed.

e Most common types of vulnerability in 2006:
- 25.1% Cross-Site Scripting

- 14% SQL Command Injection
- 7.9% Buffer Overruns

o Attacks are easy and expose valuable data

#20

Exploits Of A Mom

e The essence of SQL injection:

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN H ‘I.-.I’F\‘r’

%4

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Stwdents;—- 7

~OH.YES LUTTLE
ROBRY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS

YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND T HOPE
“~ YOUVE LEARNED

¢ TOSANMZE YOUR
DATABASE INPUTS.

#21

SQL Injection

e Note that it's basically a parsing problem

 We have a string constant in PHP plus a string
constant from the user, and when combined
they must make a valid SQL program

e One Solution: Dynamic Taint Analysis
- Propagate a “taint” bit with every string
e One Solution: Dynamic Grammar Analysis

- Partially parse PHP string fragment

- If PHP string fragment + user string fragment
parses to something with a different top-level
structure, bail! 492

Parse Trees To The Rescue!

e Do the user input strings|contribute|to

something “too high” on the parse tree?

where_clause

bcond
bterm
bterm bfactor
bfactor cc;nd
cond 4 ”
. I—_v ~ve value value
value J - v
str lit Lcomp <
A comp & id num
id lit

r -4 ¥ » ¥ « v 4 -

-
WHERE uname = 'John' AND cardtype = 2

(a)

where_clause

bcond
bcond .
4 bterm
bterm
L - -
bterm bfactor bfactor
& L
bfactor cond .
" . cond
cond . value
) value v N
4 value value . value
value J - « 4
: com
comp Str_lit - comp « comp
S v id num - pum num
id lit
L E | - * v 4 w F Y F 1 4 « - « |
WHERE uname = 'John' AND cardtype= 20R 1 =1

ib)

Figure 4. Parse trees for WHERE clauses of generated queries. Substrings from user input are underlined.

Su & Wassermann. POPL '06

Cross-Site Scripting

e Cross-Site Scripting (XSS) has the same flavor

e Evil User X posts a message with JavaScript in
it (e.g., send passwords to me) to Blog B

- Blog B can also be a forum, etc.
e Later, Luser browses Blog B

e Blog B sends over page data, including Evil X's
Message

e Luser thinks it is from Blog B (misplaced trust)
e Luser renders and interprets it

#24

Stopping Evil Posts

 Evil network-crawling robots try to post evil
JavaScript to every forum they can find

e Let's require a real human when posting
e Increases cost
« CAPTCHA

- Complete Automated
- EUbl]C IUr]ng test Due to increased se

- to tell Computers 1.0
- and Humans Apart L [e

FCommen t/Query

Have We Won Yet?

e« CAPTCHAs fail in theory and in practice

e The overarching problem is exactly the same:
- The server takes input from an untrusted user

- That input may be interpreted by another parser
later

 In SQL-CIVs, by the database's SQL parser
e In XSS, by a user's JavaScript parser

- So all of the same techniques apply for XSS

#26

Random Interpretation
Sumit Gulwani & George Necula

GRAPHIC YIQLENCE
N THE MeDIA. \

—

% = ?
-
oos

DOES 1T GLAMORIZE
VIOLENCE? SURE. DOES IT
PESENSITIZE US TO VIOLENCE?
OF COURSE. DOES 1T HELP
US TOLERATE VIOLENCE?
You BET, DOES \T STUNT
OUR, EMPATHY FOR CUR
FELLOW BEINGS 7 HECK YES.

DOES \T CAUSE WIOLENCE?

THE TRICK 1S
TO ASK THE
RIGHT GUESTION.

Probabilistically Sound
Program Analysis!

» Sound program analysis is hard (Rice’s Theorem)

e PL researchers usually pay in terms of
- Loss of completeness or precision
- Complicated algorithms
- Long running times

e Can we pay in terms of soundness instead?
- Basically, soundness = correctness
- Judgments are unsound with low probability
- We can predict and control the probability of error

- Can gain simplicity and efficiency
#28

Discovering Affine Equalities

Given a program (control-flow graph) ...

Discover equalities of the form 2y + 3z =7
- Compiler Optimizations

- Loop Invariants

- Translation Validation

There exist polynomial time deterministic
algorithms [Karr 76]

- involving expensive operations - O(n*)

We present a randomized algorithm

- as complete as the deterministic algorithms

- but faster - O(n?)

- and simpler (almost as simple as an interpreter)

#29

Example 1

F

a.=0:b:=1: a:.=1 =0:
T F

c:=b-aq; c:=2a+b;

d:=1-2b; d:=b-2;

Random testing will have
to exercise all the 4 paths to
verify the assertions

eQur algorithm is similar to
random testing

 However, we execute the
program once, in a way that
it captures the “effect” of
all the paths

assert (c+d=0); assert (c=a+1)

#30

Example 1

>
«

d

«

l-—\O“
|

c:=2a+b;
di=b-2;

Q O
|

N O
A

Random testing will have
to exercise all the 4 paths to
verify the assertions

eQur algorithm is similar to
random testing

 However, we execute the
program once, in a way that
it captures the “effect” of
all the paths

assert (c + d = 0); GM

#31

Example 1

: c:=2a+b;
- 2b; di=b-2:

Qo
won
— O
J
o

Random testing will have
to exercise all the 4 paths to
verify the assertions

eQur algorithm is similar to
random testing

 However, we execute the
program once, in a way that
it captures the “effect” of
all the paths

eExponential work, linear
time! (P=NP?)

assert (c + d = 0); GM

#32

ldea #1: Affine Join Operation

e Execute both the branches

 Combine the values of the variables at joins
using the affine join operation @, for some

randomly chosen w
V,®d,V, =WXV, +(1-w) XV,

a:=2:b:=3: a:=4:b:=1;

~_

032@74:-10 (W:7)
b=3®,1=15

#33

Example 1

assert (c+d=0); assert (c=a+1)

e Choose a random weight for
each join independently.

e All choices of random

a=1,b=0 weights verify the first

assertion

e Almost all choices
contradict the second
assertion.

#34

Example 1

assert (c+d=0); assert (c=a+1)

e Choose a random weight for
each join independently.

e All choices of random

a=1,b=0 weights verify the first

assertion

e Almost all choices
contradict the second
assertion.

#35

Example 1

_T& » Choose a random weight for

each join independently.

e All choices of random
a=1,b=0 weights verify the first
a=-4b=5 assertion

e Almost all choices
v contradict the second
assertion.

assert (c+d=0); assert (c=a+1)

#36

Example 1

a=1,b=0

c=-39,d=39

assert (c+d=0); assert (c=a+1)

e Choose a random weight for
each join independently.

e All choices of random
weights verify the first
assertion

e Almost all choices
contradict the second
assertion.

#37

Geometric Interpretation of the
Affine Join operation

® : State before the join ® satisfies all the affine
o relationships that are
® : State after the join satisfied by both @
(eg.x+y=1,2=0)
Y :
e o , Given any relationship
‘JC\‘(. " that is not satisfied by
N | any of @ (eg.x=2), ®
(x=0,y= 1)'\\ | also does not satisfy
. ! it with high probability
GeLy=0) |
‘ I
"

#38

a.=x+y

if(x =y

Example 2

= 2X

assert (b = 2x)

e|dea #1 is not
enough

*We need to make
use of the
conditional x=y on
the true branch

#39

|ldea #2: Adjust Operation

Execute multiple runs of the program in parallel

“Sample” = Collection of states at each program
point

“Adjust” the sample before a conditional (by
taking affine joins of the states in the sample)
such that

- Adjustment preserves original relationships

- Adjustment satisfies the equality in the conditional

Use adjusted sample on the true branch

#40

Geometric Interpretation of the
Adjust Operation

«— Original Point
(lies on e,=0)

Conditional / \
(e2=0) :

K Adjusted Point
(lies on e,=0 N e,=0)

I"
- |
|
|
|

. (examples show

\V “x=0” for simplicity)

#41

Sl
52

The Randomized Interpreter R

Adjust(S'.e)
g

S =549, $4

S, = S\[x «+ e]

Test:

1. What important event Yook
place on December 16, 17757

Mz

a =

&y

I do Mot BELIEVE N LiNESR
TiME. THERE 1% N Past ang
futuRE: aluL |5 ONE, aHd
ExistENCE iM HHE YEMPoRal SEMSE
15 ILLUSeRY, THG QUESHon,
HEREFORE, 15 MEANNGLESS and
MpessiBLE Yo AMS.eR

a0 J’%

{ WMEM N DOURT,
DENY ALl TERMS
BMD DEFIATIONS |

M

A =
& U

Completeness and soundness of R

 We compare the randomized interpreter R
with a suitable actual interpreter A

- Actual Interpreter A would be too slow (etc.) to
use in real life!

R mimics A with high probability
- Ris as complete as A
- Ris sound with high probability

#43

Soundness Theorem

e If A g =0, then with high probability
Rxg=0

o Error probability < (2d)° (“7 Z 1)
- b: number of branches
- j: number of joins
- d: size of the field
- r: number of points in the sample

e Ifj=b=10, r =15, d~232 then
error probability < 298

#44

Conclusions, Wessy Summary

 Randomization can help achieve simplicity
and efficiency at the expense of making
soundness probabilistic

 Has been extended to handle uninterpreted
function symbols, interprocedural analyses,
randomized decision procedures for theorem
proving, combined abstract interpreters, ...

e May help with complicated security analyses
e Go to grad school!

#45

Homework

e Final Exam Soon ...

WILL NOW GO ON
THE WTERHET?

