
#1

ACM Trivia Bowl

Today
• 7pm OLS 011
• Snacks and drinks provided
• All are welcome! I will be there.

– email eas2h with team or just show up

• If you are in one of the top three teams, I
will give you one point of extra credit (as
if you had found a bug in Cool).

#2

 “Wizard is about to die.”
• PA5 is due Wednesday April 23rd – that's about

three weeks from now.
• I have only one auto-tester submission as lunch

time today.
– I am predicting that you haven't started PA5 yet.

• You will have second midterms in this class
(and others!) between then and now.

• If you can't interpret hello-world.cl by the end
of this weekend, I forsee regret, remorse and
lack of sleep in your future.

#3

ExceptionsExceptions

#4

One-Slide Summary

• Real-world programs must have error-
handling code. Errors can be handled where
they are detected or the error can be
propagated to a caller.

• Passing special error return codes is itself
error-prone.

• Exceptions are a formal and automated way
of reporting and handling errors. Exceptions
can be implemented efficiently and described
formally.

#5

Language System Structure

• We looked at each stage in
turn

• A new language feature
affects many stages

• We will add exceptions

Source

Lexer

Parser

Code Generator

Runtime System

Run it!

Type checker

#6

Lecture Summary

• Why exceptions ?

• Syntax and informal semantics

• Semantic analysis (i.e. type checking rules)

• Operational semantics

• Code generation

• Runtime system support

#7

Exceptional Motivation

• “Classroom” programs are written with optimistic
assumptions

• Real-world programs must consider “exceptional”
situations:
– Resource exhaustion (disk full, out of memory, network

packet collision, …)
– Invalid input
– Errors in the program (null pointer dereference)

• It is usual for code to contain 1-5% error handling
code (figures for modern Java open source code)
– With 3-46% of the program text transitively reachable

#8

Why do we care?

• Are there any implications if software makes
mistakes?

#9

Approaches To Error Handling

Two ways of dealing with errors:
• Handle them where you detect them

• e.g., null pointer dereference ! stop execution

• Let the caller handle the errors:
• The caller has more contextual information

e.g. an error when opening a file:
b) In the context of opening /etc/passwd
c) In the context of opening a log file

• But we must tell the caller about the error!

#10

Error Return Codes

• The callee can signal the error by returning a
special return value or error code:
– Must not be one of the valid inputs
– Must be agreed upon beforehand (i.e., in API)

• What's an example?

• The caller promises to check the error return
and either:
– Correct the error, or
– Pass it on to its own caller

#11

Error Return Codes

• It is sometimes hard to select return codes
– What is a good error code for:

• divide(num: Double, denom: Double) : Double { … }

• How many of you always check errors for:
– malloc(int) ?
– open(char *) ?
– close(int) ?
– time(struct time_t *) ?

• Easy to forget to check error return codes

#12

Example:
Automated Grade Assignment

float getGrade(int sid) { return dbget(gradesdb, sid); }

void setGrade(int sid, float grade) {
dbset(gradesdb, sid, grade);

}
void extraCredit(int sid) {

setGrade(sid, 0.33 + getGrade(sid));

}
void grade_inflator() {

while(gpa() < 3.0) { extraCredit(random()); }

}

• What errors are we ignoring here?

#13

Example: Automated Grade
Assignment

float getGrade(int sid) {
 float res; int err = dbget(gradesdb, sid, &res);
 if(err < 0) { return -1.0;}
 return res;
}

int extraCredit(int sid) {
 int err; float g = getGrade(sid);
 if(g < 0.0) { return 1; }
 err = setGrade(sid, 0.33 + g));
 return (err < 0);
}

#14

Example: Automated Grade
Assignment

float getGrade(int sid) {
 float res; int err = dbget(gradesdb, sid, &res);
 if(err < 0) { return -1.0;}
 return res;
}

int extraCredit(int sid) {
 int err; float g = getGrade(sid);
 if(g < 0.0) { return 1; }
 err = setGrade(sid, 0.33 + g));
 return (err < 0);
}

A lot of extra
code

#15

Example: Automated Grade
Assignment

float getGrade(int sid) {
 float res; int err = dbget(gradesdb, sid, &res);
 if(err < 0) { return -1.0;}
 return res;
}

int extraCredit(int sid) {
 int err; float g = getGrade(sid);
 if(g < 0.0) { return 1; }
 err = setGrade(sid, 0.33 + g));
 return (err < 0);
}

Some functions
change their type

A lot of extra
code

#16

Example: Automated Grade
Assignment

float getGrade(int sid) {
 float res; int err = dbget(gradesdb, sid, &res);
 if(err < 0) { return -1.0;}
 return res;
}

int extraCredit(int sid) {
 int err; float g = getGrade(sid);
 if(g < 0.0) { return 1; }
 err = setGrade(sid, 0.33 + g));
 return (err < 0);
}

Some functions
change their type

Error codes are
sometimes arbitrary

A lot of extra
code

#17

Exceptions

• Exceptions are a language mechanism
designed to allow:
– Deferral of error handling to a caller

– Without (explicit) error codes

– And without (explicit) error return code checking

#18

Adding Exceptions to Cool

• We extend the language of expressions:
e ::= throw e | try e catch x : T) e’

• (Informal) semantics of throw e
– Signals an exception
– Interrupts the current evaluation and searches for

an exception handler up the activation tree
– The value of e is an exception parameter and can

be used to communicate details about the
exception

#19

Adding Exceptions to Cool

(Informal) semantics of try e catch x : T) e1

– e is evaluated first
– If e’s evaluation terminates normally with v

 then v is the result of the entire expression

 Else (e’s evaluation terminates exceptionally)
 If the exception parameter is of type · T then

– Evaluate e1 with x bound to the exception parameter

– The (normal or exceptional) result of ev

– aluating e1 becomes the result of the entire expression

 Else
– The entire expression terminates exceptionally

#20

Example:
Automated Grade Assignment

float getGrade(int sid) { return dbget(gradesdb, sid); }

void setGrade(int sid, float grade) {

if(grade < 0.0 || grade > 4.0) { throw (new NaG); }
dbset(gradesdb, sid, grade); }

void extraCredit(int sid) {
setGrade(sid, 0.33 + getGrade(sid)) }

void grade_inflator() {
while(gpa < 3.0) {
 try extraCredit(random())
 catch x : Object) print “Aie!?\n”; }
}

#21

Example Notes

• Only error handling code remains
• But no error propagation code

– The compiler handles the error propagation
– No way to forget about it
– And also much more efficient (we’ll see)

• Two kinds of evaluation outcomes:
– Normal return (with a return value)
– Exceptional “return” (with an exception

parameter)
– No way to get confused which is which

#22

Where do exceptions come from?

#23

Overview

Why exceptions ?

Syntax and informal semantics

• Semantic analysis (i.e. type checking rules)

• Operational semantics

• Code generation

• Runtime system support

#24

Typing Exceptions
• We must extend the Cool typing judgment

 O, M, C ` e : T
– Type T refers to the normal return value!

• We’ll start with the rule for try:
– Parameter “x” is bound in the catch expression
– try is like a conditional

O, M , C ` try e catch x : T) e’ : T1 t T2

O, M, C ` e : T1 O[T/x], M, C ` e’ : T2

#25

Typing Exceptions

• What is the type of “throw e” ?
• The type of an expression:

– Is a description of the possible return values, and
– Is used to decide in what contexts we can use the

expression

• “throw” does not return to its immediate context
but directly to the exception handler!

• The same “throw e” is valid in any context:
if throw e then (throw e) + 1 else (throw e).foo()

• As if “throw e” has any type!

#26

Typing Exceptions

• As long as “e” is well typed, “throw e” is well
typed with any type needed in the context
– T2 is unbound!

• This is convenient because we want to be
able to signal errors from any context

O, M , C ` throw e : T2

O, M, C ` e : T1

#27

Overview

Why exceptions ?

Syntax and informal semantics

Semantic analysis (i.e. type checking rules)

• Operational semantics

• Code generation

• Runtime system support

#28

Operational Semantics of
Exceptions

• Several ways to model the behavior of
exceptions

• A generalized value is
– Either a normal termination value, or
– An exception with a parameter value
 g ::= Norm(v) | Exc(v)

• Thus given a generalized value we can:
– Tell if it is normal or exceptional return, and
– Extract the return value or the exception

parameter

#29

Operational Semantics of
Exceptions (1)

• The existing rules change to use Norm(v) :

so, E, S ` e1 + e2 : Norm(Int(n1 + n2)), S2

so, E, S ` e1 : Norm(Int(n1)), S1
so, E, S1 ` e2 : Norm(Int(n2)), S2

so, E, S ` id : Norm(v), S

E(id) = lid
S(lid) = v

so, E, S ` self : Norm(so), S

#30

Operational Semantics of
Exceptions (2)

• “throw” returns exceptionally:

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : v, S1

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Norm(v), S1

• The rule above is not well formed! Why?

#31

Operational Semantics of
Exceptions (2)

• “throw” returns exceptionally:

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : v, S1

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Norm(v), S1

• The rule above is not well formed! Why?

#32

Operational Semantics of
Exceptions (3)

• “throw e” always returns exceptionally:

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Norm(v), S1

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Exc(v), S1

• What if the evaluation of e itself throws an
exception?
• e.g. “throw (1 + (throw 2))” is like “throw 2”
• Formally:

#33

Operational Semantics of
Exceptions (4)

• All existing rules are changed to propagate
the exception:

so, E, S ` e1 + e2 : Exc(v), S1

so, E, S ` e1 : Exc(v), S1

so, E, S ` e1 + e2 : Exc(v), S2

so, E, S ` e1 : Norm(Int(n1)), S1
so, E, S1 ` e2 : Exc(v), S2

• Note: the evaluation of e2 is aborted

#34

Operational Semantics of
Exceptions (5)

• The rules for “try” expressions:
– Multiple rules (just like for a conditional)

so, E, S ` try e catch x : T) e’ : Norm(v), S1

so, E, S ` e : Norm(v), S1

• What if e terminates exceptionally?
• We must check whether it terminates with an

exception parameter of type T or not

#35

Operational Semantics for
Exceptions (6)

• If e does not throw the expected exception

• If e does throw the expected exception

so, E, S ` try e catch x : T) e’ : g, S2

so, E, S ` e : Exc(v), S1

v = X(…)
X · T

lnew = newloc(S1)
so, E[lnew/x] , S1[v/lnew] ` e’ : g, S2

so, E, S ` try e catch x : T) e’ : Exc(v), S1

so, E, S ` e : Exc(v), S1

v = X(…)
not (X · T)

#36

Operational Semantics of
Exceptions. Notes

• Our semantics is precise
• But is not very clean

– It has two or more versions of each original rule

• It is not a good recipe for implementation
– It models exceptions as “compiler-inserted

propagation of error return codes”
– There are much better ways of implementing

exceptions

• There are other semantics that are cleaner
and model better implementations

#37

Overview

Why exceptions ?

Syntax and informal semantics

Semantic analysis (i.e. type checking rules)

Operational semantics

• Code generation

• Runtime system support

#38

Code Generation for Exceptions

• One method is suggested by the operational
semantics

• Simple to implement
• But not very good

– We pay a cost at each call/return (i.e., often)
– Even though exceptions are rare (i.e., exceptional)

• A good engineering principle:
– Don’t pay often for something that you use rarely!

• What is Amdahl’s Law?

– Optimize the common case!

#39

Solutions?

#40

Long Jumps

• A long jump is a non-local goto:
– In one shot you can jump back to a function in the caller

chain (bypassing many intermediate frames)
– A long jump can “return” from many frames at once

• Long jumps are a commonly used implementation
scheme for exceptions
– Take a compilers class for details

• Disadvantage:
– (Minor) performance penalty at each try

#41

Implementing Exceptions with
Tables (1)

cgen(try e catch e’) =
 cgen(e) ; Code for the try block
 goto end_try
L_catch:
 cgen(e’) ; Code for the catch block
end_try:
 …
cgen(throw) =
 jr runtime_throw ; <- this is the trick!

• We do not want to pay for exceptions when
executing a “try”
– Only when executing a “throw”

#42

Implementing Exceptions with
Tables (2)

• The normal execution proceeds at full speed

• When a throw is executed we use a runtime
function that finds the right catch block

• For this to be possible the compiler produces
a table saying for each catch block to which
instructions it corresponds

#43

Implementing Exceptions with
Tables. Notes

• runtime_throw looks at the table and figures
which catch handler to invoke

• Advantage:
– No cost, except if an exception is thrown

• Disadvantage:
– Tables take space (even 30% of binary size)
– But at least they can be placed out of the way

• Java Virtual Machine uses this scheme

#44

try … finally …

• Another exception-related construct:
 try e1 finally e2

– After the evaluation of e1 terminates (either normally
or exceptionally) it evaluates e2

– The whole expression then terminates like e1

• Used for cleanup code:
try
 f = fopen(“treasure.directions”, “w”);
 … compute … fprintf(f, “Go %d paces to the west”, paces); …
finally
 fclose(f)

#45

Try-Finally Semantics

• Typing rule:

• Operational semantics:
O, M , C ` try e1 finally e2 : T2

O, M, C ` e1 : T1 O, M, C ` e2 : T2

so, E, S ` try e1 finally e2 : g, S2

so, E, S ` e1 : Norm(v), S1
so, E, S1 ` e2 : g, S2

so, E, S ` try e1 finally e2 : Exc(v1), S2

so, E, S ` e1 : Exc(v1), S1
so, E, S1 ` e2 : Norm(v2), S2

#46

Psycho Corner Case

• Operational Semantics

• Difficulty in understanding try-finally is one
reason why Java programmers tend to make
at least 200 exception handling mistakes per
million lines of code

so, E, S ` try e1 finally e2 : ???, S2

so, E, S ` e1 : Exc(v1), S1
so, E, S1 ` e2 : Exc(v2), S2

#47

14.20.2 Execution of try-catch-finally
• A try statement with a finally block is executed by first executing the try block. Then there is

a choice:
• If execution of the try block completes normally, then the finally block is executed, and then

there is a choice:
– If the finally block completes normally, then the try statement completes normally.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for

reason S.
• If execution of the try block completes abruptly because of a throw of a value V, then there is

a choice:
– If the run-time type of V is assignable to the parameter of any catch clause of the try statement, then

the first (leftmost) such catch clause is selected. The value V is assigned to the parameter of the
selected catch clause, and the Block of that catch clause is executed. Then there is a choice:

• If the catch block completes normally, then the finally block is executed. Then there is a choice:
– If the finally block completes normally, then the try statement completes normally.
– If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason.

• If the catch block completes abruptly for reason R, then the finally block is executed. Then there is a choice:
– If the finally block completes normally, then the try statement completes abruptly for reason R.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is

discarded).

– If the run-time type of V is not assignable to the parameter of any catch clause of the try statement,
then the finally block is executed. Then there is a choice:

• If the finally block completes normally, then the try statement completes abruptly because of a throw of the value
V.

• If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and
the throw of value V is discarded and forgotten).

• If execution of the try block completes abruptly for any other reason R, then the finally block
is executed. Then there is a choice:

– If the finally block completes normally, then the try statement completes abruptly for reason R.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for

reason S (and reason R is discarded).

#48

Avoiding Code Duplication for
try … finally

• The Java Virtual
Machine
designers wanted
to avoid this code
duplication

#49

Avoiding Code Duplication for
try … finally

• The Java Virtual Machine designers wanted to
avoid this code duplication

• So they invented a new notion of subroutine
– Executes within the stack frame of a method
– Has access to and can modify local variables
– One of the few true innovations in the JVM

#50

JVML Subroutines Are
Complicated

• Subroutines are the most difficult part of the JVML

• And account for the several bugs and
inconsistencies in the bytecode verifier
– And are used in practice for code obfuscation!

• Complicate the formal proof of correctness:
– 14 or 26 proof invariants due to subroutines
– 50 of 120 lemmas due to subroutines
– 70 of 150 pages of proof due to subroutines

#51

Are JVML Subroutines
Worth the Trouble ?

• Subroutines save space?
– About 200 subroutines in 650,000 lines of Java

(mostly in JDK)
– No subroutines calling other subroutines
– Subroutines save 2427bytes of 8.7 Mbytes (0.02%)!

• Changing the name of the language from Java
back to Oak would save 13 times more space !

#52

Exceptions. Conclusion

• Exceptions are a very useful construct

• A good programming language solution to an
important software engineering problem

• But exceptions are complicated:
– Hard to implement
– Complicate the optimizer
– Very hard to debug the implementation

(exceptions are exceptionally rare in code)

#53

Homework
• WA7 due Tuesday
• For Tuesday – Read Graham paper on gprof
• Midterm 2 – Tue Apr 15 (12 days)

– Covers Lectures 11 – 21 and all reading, WAs and
PAs done during that time

