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ACM Trivia Bowl

Today
• 7pm OLS 011
• Snacks and drinks provided
• All are welcome! I will be there. 

– email eas2h with team or just show up

• If you are in one of the top three teams, I 
will give you one point of extra credit (as 
if you had found a bug in Cool). 
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  “Wizard is about to die.”
• PA5 is due Wednesday April 23rd – that's about 

three weeks from now.
• I have only one auto-tester submission as lunch 

time today.
– I am predicting that you haven't started PA5 yet.

• You will have second midterms in this class 
(and others!) between then and now.

• If you can't interpret hello-world.cl by the end 
of this weekend, I forsee regret, remorse and 
lack of sleep in your future. 
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ExceptionsExceptions
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One-Slide Summary

• Real-world programs must have error-
handling code. Errors can be handled where 
they are detected or the error can be 
propagated to a caller. 

• Passing special error return codes is itself 
error-prone. 

• Exceptions are a formal and automated way 
of reporting and handling errors. Exceptions 
can be implemented efficiently and described 
formally. 



#5

Language System Structure

• We looked at each stage in 
turn

• A new language feature 
affects many stages

• We will add exceptions

Source

Lexer

Parser

Code Generator

Runtime System

Run it!

Type checker
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Lecture Summary

• Why exceptions ?

• Syntax and informal semantics

• Semantic analysis (i.e. type checking rules)

• Operational semantics

• Code generation

• Runtime system support
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Exceptional Motivation

• “Classroom” programs are written with optimistic 
assumptions

• Real-world programs must consider “exceptional” 
situations:
– Resource exhaustion (disk full, out of memory, network 

packet collision, …)
– Invalid input
– Errors in the program (null pointer dereference)

• It is usual for code to contain 1-5% error handling 
code (figures for modern Java open source code)
– With 3-46% of the program text transitively reachable 
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Why do we care?

• Are there any implications if software makes 
mistakes?
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Approaches To Error Handling

Two ways of dealing with errors:
• Handle them where you detect them

• e.g., null pointer dereference ! stop execution

• Let the caller handle the errors:
• The caller has more contextual information

e.g. an error when opening a file:
b) In the context of opening /etc/passwd
c) In the context of opening a log file 

• But we must tell the caller about the error!
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Error Return Codes

• The callee can signal the error by returning a 
special return value or error code:
– Must not be one of the valid inputs
– Must be agreed upon beforehand (i.e., in API)

• What's an example?

• The caller promises to check the error return 
and either:
– Correct the error, or
– Pass it on to its own caller 
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Error Return Codes

• It is sometimes hard to select return codes
– What is a good error code for:

• divide(num: Double, denom: Double) : Double { … } 

• How many of you always  check errors for:
– malloc(int) ?
– open(char *) ?
– close(int) ?
– time(struct time_t *) ?

• Easy to forget to check error return codes
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Example: 
Automated Grade Assignment 

float getGrade(int sid) { return dbget(gradesdb, sid); }

void setGrade(int sid, float grade) {   
dbset(gradesdb, sid, grade); 

}
void extraCredit(int sid) {

setGrade(sid, 0.33 + getGrade(sid));

}
void grade_inflator() {

while(gpa() < 3.0) {  extraCredit(random());  } 

}

• What errors are we ignoring here?
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Example: Automated Grade 
Assignment 

float getGrade(int sid) {   
    float res; int err = dbget(gradesdb, sid, &res); 
    if(err < 0) { return -1.0;}
    return res;
}

int extraCredit(int sid) {
    int err;  float g = getGrade(sid);
    if(g < 0.0) { return 1; }
    err = setGrade(sid, 0.33 + g));
    return (err < 0); 
}
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Example: Automated Grade 
Assignment 

float getGrade(int sid) {   
    float res; int err = dbget(gradesdb, sid, &res); 
    if(err < 0) { return -1.0;}
    return res;
}

int extraCredit(int sid) {
    int err;  float g = getGrade(sid);
    if(g < 0.0) { return 1; }
    err = setGrade(sid, 0.33 + g));
    return (err < 0); 
}

A lot of extra
code
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Example: Automated Grade 
Assignment 

float getGrade(int sid) {   
    float res; int err = dbget(gradesdb, sid, &res); 
    if(err < 0) { return -1.0;}
    return res;
}

int extraCredit(int sid) {
    int err;  float g = getGrade(sid);
    if(g < 0.0) { return 1; }
    err = setGrade(sid, 0.33 + g));
    return (err < 0); 
}

Some functions 
change their type

A lot of extra
code
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Example: Automated Grade 
Assignment 

float getGrade(int sid) {   
    float res; int err = dbget(gradesdb, sid, &res); 
    if(err < 0) { return -1.0;}
    return res;
}

int extraCredit(int sid) {
    int err;  float g = getGrade(sid);
    if(g < 0.0) { return 1; }
    err = setGrade(sid, 0.33 + g));
    return (err < 0); 
}

Some functions 
change their type

Error codes are 
sometimes arbitrary

A lot of extra
code



#17

Exceptions

• Exceptions are a language mechanism 
designed to allow: 
– Deferral of error handling to a caller

– Without (explicit) error codes

– And without (explicit) error return code checking
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Adding Exceptions to Cool

• We extend the language of expressions:
e ::= throw e | try e catch x : T ) e’

• (Informal) semantics of throw e
– Signals an exception
– Interrupts the current evaluation and searches for 

an exception handler up the activation tree
– The value of e is an exception parameter and can 

be used to communicate details about the 
exception
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Adding Exceptions to Cool

(Informal) semantics of try e catch x : T ) e1

–  e is evaluated first
– If e’s evaluation terminates normally with v

    then v is the result of the entire expression

    Else (e’s evaluation terminates exceptionally)
   If the exception parameter is of type · T then

– Evaluate e1 with x bound to the exception parameter

– The (normal or exceptional) result of ev

– aluating e1 becomes the result of the entire expression

  Else
– The entire expression terminates exceptionally
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Example: 
Automated Grade Assignment

float getGrade(int sid) {   return dbget(gradesdb, sid); }

void setGrade(int sid, float grade) {   

if(grade < 0.0 || grade > 4.0) { throw (new NaG); }
dbset(gradesdb, sid, grade); }

void extraCredit(int sid) {
setGrade(sid, 0.33 + getGrade(sid)) }

void grade_inflator() {
while(gpa < 3.0) { 
    try extraCredit(random()) 
    catch x : Object ) print “Aie!?\n”; } 
}
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Example Notes

• Only error handling code remains
• But no error propagation code

– The compiler handles the error propagation
– No way to forget about it
– And also much more efficient (we’ll see)

• Two kinds of evaluation outcomes:
– Normal return (with a return value)
– Exceptional “return” (with an exception 

parameter)
– No way to get confused which is which
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Where do exceptions come from?
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Overview

Why exceptions ?

Syntax and informal semantics

• Semantic analysis (i.e. type checking rules)

• Operational semantics

• Code generation

• Runtime system support
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Typing Exceptions
• We must extend the Cool typing judgment

                        O, M, C ` e : T
– Type T refers to the normal return value!

• We’ll start with the rule for try:
– Parameter “x” is bound in the catch expression
– try is like a conditional

O, M , C ` try e catch x : T ) e’ : T1 t T2

O, M, C ` e : T1           O[T/x], M, C ` e’ : T2
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Typing Exceptions

• What is the type of “throw e” ?
• The type of an expression: 

– Is a description of the possible return values, and
– Is used to decide in what contexts we can use the 

expression

• “throw” does not return to its immediate context 
but directly to the exception handler!

• The same “throw e” is valid in any context:
if throw e then (throw e) + 1 else (throw e).foo()

• As if “throw e” has any type!
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Typing Exceptions

• As long as “e” is well typed, “throw e” is well 
typed with any type needed in the context
– T2 is unbound!

• This is convenient because we want to be 
able to signal errors from any context

O, M , C ` throw e : T2

O, M, C ` e : T1
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Overview

Why exceptions ?

Syntax and informal semantics

Semantic analysis (i.e. type checking rules)

• Operational semantics

• Code generation

• Runtime system support
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Operational Semantics of 
Exceptions

• Several ways to model the behavior of 
exceptions

• A generalized value is
– Either a normal termination value, or
– An exception with a parameter value
             g ::= Norm(v) | Exc(v)

• Thus given a generalized value we can:
– Tell if it is normal or exceptional return, and
– Extract the return value or the exception 

parameter
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Operational Semantics of 
Exceptions (1)

• The existing rules change to use Norm(v) :

so, E, S ` e1 + e2 : Norm(Int(n1 + n2)), S2

so, E, S ` e1 : Norm(Int(n1)), S1 
so, E, S1 ` e2 : Norm(Int(n2)), S2

so, E, S ` id : Norm(v), S

E(id) = lid
S(lid) = v

so, E, S ` self : Norm(so), S
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Operational Semantics of 
Exceptions (2)

• “throw” returns exceptionally:

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : v, S1

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Norm(v), S1

• The rule above is not well formed! Why?
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Operational Semantics of 
Exceptions (2)

• “throw” returns exceptionally:

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : v, S1

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Norm(v), S1

• The rule above is not well formed! Why?
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Operational Semantics of 
Exceptions (3)

• “throw e” always returns exceptionally:

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Norm(v), S1

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Exc(v), S1

• What if the evaluation of e itself throws an 
exception?
• e.g. “throw (1 + (throw 2))” is like “throw 2”
• Formally:
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Operational Semantics of 
Exceptions (4)

• All existing rules are changed to propagate 
the exception:

so, E, S ` e1 + e2 : Exc(v), S1

so, E, S ` e1 : Exc(v), S1 

so, E, S ` e1 + e2 : Exc(v), S2

so, E, S ` e1 : Norm(Int(n1)), S1 
so, E, S1 ` e2 : Exc(v), S2

• Note: the evaluation of e2 is aborted
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Operational Semantics of 
Exceptions (5)

• The rules for “try” expressions:
– Multiple rules (just like for a conditional)

so, E, S ` try e catch x : T ) e’ : Norm(v), S1

so, E, S ` e : Norm(v), S1 

• What if e terminates exceptionally?
• We must check whether it terminates with an 

exception parameter of type T or not
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Operational Semantics for 
Exceptions (6)

• If e does not throw the expected exception

• If e does throw the expected exception

so, E, S ` try e catch x : T ) e’ : g, S2

so, E, S ` e : Exc(v), S1

v = X(…)
X · T 

lnew = newloc(S1) 
so, E[lnew/x] , S1[v/lnew] ` e’ : g, S2

so, E, S ` try e catch x : T ) e’ : Exc(v), S1

so, E, S ` e : Exc(v), S1

v = X(…)
not (X · T) 
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Operational Semantics of 
Exceptions. Notes

• Our semantics is precise
• But is not very clean

– It has two or more versions of each original rule

• It is not a good recipe for implementation
– It models exceptions as “compiler-inserted 

propagation of error return codes”
– There are much better ways of implementing 

exceptions

• There are other semantics that are cleaner 
and model better implementations
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Overview

Why exceptions ?

Syntax and informal semantics

Semantic analysis (i.e. type checking rules)

Operational semantics

• Code generation

• Runtime system support
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Code Generation for Exceptions

• One method is suggested by the operational 
semantics

• Simple to implement
• But not very good

– We pay a cost at each call/return (i.e., often)
– Even though exceptions are rare (i.e., exceptional)

• A good engineering principle:
– Don’t pay often for something that you use rarely!

• What is Amdahl’s Law? 

– Optimize the common case!
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Solutions?
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Long Jumps

• A long jump is a non-local goto:
– In one shot you can jump back to a function in the caller 

chain (bypassing many intermediate frames)
– A long jump can “return” from many frames at once

• Long jumps are a commonly used implementation 
scheme for exceptions
– Take a compilers class for details

• Disadvantage: 
– (Minor) performance penalty at each try
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Implementing Exceptions with 
Tables (1)

cgen(try e catch e’) = 
    cgen(e)                   ; Code for the try block
    goto end_try 
L_catch:
    cgen(e’)                   ; Code for the catch block
end_try:  
     …
cgen(throw) = 
    jr runtime_throw       ; <- this is the trick! 

• We do not want to pay for exceptions when 
executing a “try”
– Only when executing a “throw”
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Implementing Exceptions with 
Tables (2)

• The normal execution proceeds at full speed

• When a throw is executed we use a runtime 
function that finds the right catch block

• For this to be possible the compiler produces 
a table saying for each catch block to which 
instructions it corresponds
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Implementing Exceptions with 
Tables. Notes

• runtime_throw looks at the table and figures 
which catch handler to invoke

• Advantage: 
– No cost, except if an exception is thrown

• Disadvantage:
– Tables take space (even 30% of binary size)
– But at least they can be placed out of the way

• Java Virtual Machine uses this scheme
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try … finally …

• Another exception-related construct:
                   try e1 finally e2

– After the evaluation of e1 terminates (either normally 
or exceptionally) it evaluates e2

– The whole expression then terminates like e1

• Used for cleanup code:
try 
     f = fopen(“treasure.directions”, “w”);
     … compute … fprintf(f, “Go %d paces to the west”, paces); …
finally 
     fclose(f)
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Try-Finally Semantics

• Typing rule:

• Operational semantics:
O, M , C ` try e1 finally e2 : T2

O, M, C ` e1 : T1           O, M, C ` e2 : T2

so, E, S ` try e1 finally e2 : g, S2

so, E, S ` e1 : Norm(v), S1 
so, E, S1 ` e2 : g, S2 

so, E, S ` try e1 finally e2 : Exc(v1), S2

so, E, S ` e1 : Exc(v1), S1 
so, E, S1 ` e2 : Norm(v2), S2 
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Psycho Corner Case

• Operational Semantics

• Difficulty in understanding try-finally is one 
reason why Java programmers tend to make 
at least 200 exception handling mistakes per 
million lines of code

so, E, S ` try e1 finally e2 : ???, S2

so, E, S ` e1 : Exc(v1), S1 
so, E, S1 ` e2 : Exc(v2), S2 
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14.20.2 Execution of try-catch-finally
• A try statement with a finally block is executed by first executing the try block. Then there is 

a choice:
• If execution of the try block completes normally, then the finally block is executed, and then 

there is a choice: 
– If the finally block completes normally, then the try statement completes normally. 
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for 

reason S. 
• If execution of the try block completes abruptly because of a throw of a value V, then there is 

a choice: 
– If the run-time type of V is assignable to the parameter of any catch clause of the try statement, then 

the first (leftmost) such catch clause is selected. The value V is assigned to the parameter of the 
selected catch clause, and the Block of that catch clause is executed. Then there is a choice: 

• If the catch block completes normally, then the finally block is executed. Then there is a choice: 
– If the finally block completes normally, then the try statement completes normally. 
– If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason. 

• If the catch block completes abruptly for reason R, then the finally block is executed. Then there is a choice: 
– If the finally block completes normally, then the try statement completes abruptly for reason R. 
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is 

discarded). 

– If the run-time type of V is not assignable to the parameter of any catch clause of the try statement, 
then the finally block is executed. Then there is a choice: 

• If the finally block completes normally, then the try statement completes abruptly because of a throw of the value 
V. 

• If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and 
the throw of value V is discarded and forgotten). 

• If execution of the try block completes abruptly for any other reason R, then the finally block 
is executed. Then there is a choice: 

– If the finally block completes normally, then the try statement completes abruptly for reason R. 
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for 

reason S (and reason R is discarded). 
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Avoiding Code Duplication for 
try … finally

• The Java Virtual 
Machine 
designers wanted 
to avoid this code 
duplication
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Avoiding Code Duplication for 
try … finally

• The Java Virtual Machine designers wanted to 
avoid this code duplication

• So they invented a new notion of subroutine
– Executes within the stack frame of a method
– Has access to and can modify local variables
– One of the few true innovations in the JVM
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JVML Subroutines Are 
Complicated

• Subroutines are the most difficult part of the JVML

• And account for the several bugs and 
inconsistencies in the bytecode verifier
– And are used in practice for code obfuscation!

• Complicate the formal proof of correctness:
– 14 or 26 proof invariants due to subroutines
– 50 of 120 lemmas due to subroutines
– 70 of 150 pages of proof due to subroutines
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Are JVML Subroutines 
Worth the Trouble ?

• Subroutines save space?
– About 200 subroutines in 650,000 lines of Java 

(mostly in JDK)
– No subroutines calling other subroutines
– Subroutines save 2427bytes of 8.7 Mbytes (0.02%)!

• Changing the name of the language from Java 
back to Oak would save 13 times more space !
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Exceptions. Conclusion

• Exceptions are a very useful construct

• A good programming language solution to an 
important software engineering problem

• But exceptions are complicated:
– Hard to implement
– Complicate the optimizer
– Very hard to debug the implementation 

(exceptions are exceptionally rare in code)
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Homework
• WA7 due Tuesday
• For Tuesday – Read Graham paper on gprof
• Midterm 2 – Tue Apr 15 (12 days)

– Covers Lectures 11 – 21 and all reading, WAs and 
PAs done during that time


