
#1

ACM Trivia Bowl

• Thursday April 3rd (two days from now)
• 7pm OLS 001
• Snacks and drinks provided
• All are welcome! I will be there.

• If you are in one of the top three teams, I
will give you one point of extra credit (as
if you had found a bug in Cool).

#2

Automatic Memory ManagementAutomatic Memory Management

#3

One-Slide Summary
• An automatic memory management system

deallocates objects when they are no longer used
and reclaims their storage space.

• We must be conservative and only free objects that
will not be used later.

• Garbage collection scans the heap from a set of
roots to find reachable objects. Mark and Sweep
and Stop and Copy are two GC algorithms.

• Reference Counting stores the number of pointers
to an object with that object and frees it when that
count reaches zero.

#4

Lecture Outine

• Why Automatic Memory Management?

• Garbage Collection

• Three Techniques
– Mark and Sweep
– Stop and Copy
– Reference Counting

#5

Why Automatic Memory Mgmt?

• Storage management is still a hard problem in
modern programming

• C and C++ programs have many storage bugs
– forgetting to free unused memory
– dereferencing a dangling pointer
– overwriting parts of a data structure by accident
– and so on... (can be big security problems)

• Storage bugs are hard to find
– a bug can lead to a visible effect far away in time

and program text from the source

#6

Type Safety and
Memory Management

• Some storage bugs can be prevented in a
strongly typed language
– e.g., you cannot overrun the array limits

• Can types prevent errors in programs with
manual allocation and deallocation of
memory?
– Some fancy type systems (linear types) were

designed for this purpose but they complicate
programming significantly

• If you want type safety then you must use
automatic memory management

#7

Automatic Memory Management
• This is an old problem:

– Studied since the 1950s for Lisp

• There are several well-known techniques for
performing completely automatic memory
management

• Until recently they were unpopular outside
the Lisp family of languages
– just like type safety used to be unpopular

#8

The Basic Idea

• When an object that takes memory space is
created, unused space is automatically
allocated
– In Cool, new objects are created by new X

• After a while there is no more unused space
• Some space is occupied by objects that will

never be used again (= dead objects?)
• This space can be freed to be reused later

#9

Dead Again?

• How can we tell whether an object will
“never be used again”?
– In general it is impossible (undecideable) to tell
– We will have to use a heuristic to find many (not

all) objects that will never be used again

• Observation: a program can use only the
objects that it can find:

let x : A Ã new A in { x Ã y; ... }

– After x Ã y there is no way to access the newly
allocated object

#10

Garbage

• An object x is reachable if and only if:
– A local variable (or register) contains a pointer to

x, or
– Another reachable object y contains a pointer to x

• You can find all reachable objects by starting
from local variables and following all the
pointers (“transitive”)

• An unreachable object can never by referred
to by the program
– These objects are called garbage

#11

Reachability is an Approximation

• Consider the program:
x Ã new Ant;

y Ã new Bat;

x Ã y;

if alwaysTrue() then x Ã new Cow else x.eat() fi

• After x Ã y (assuming y becomes dead there)
– The object Ant is not reachable anymore
– The object Bat is reachable (through x)
– Thus Bat is not garbage and is not collected
– But object Bat is never going to be used

#12

Cool Garbage

• At run-time we have two mappings:
– Environment E maps variable identifiers to

locations
– Store S maps locations to values

• Proposed Cool Garbage Collector
– for each location l 2 domain(S)
– let can_reach = false
– for each (v,l2) 2 E

– if l = l2 then can_reach = true

– if not can_reach then reclaim_location(l)

#13

Does That Work?

#14

Cooler Garbage

– Environment E maps variable identifiers to locations
– Store S maps locations to values

• Proposed Cool Garbage Collector
– for each location l 2 domain(S)

– let can_reach = false

– for each (v,l2) 2 E

– if l = l2 then can_reach = true

– for each l3 2 v // v is X(…, ai = li, …)

– if l = l3 then can_reach = true

– if not can_reach then reclaim_location(l)

#15

Garbage Analysis

• Could we use the proposed Cool Garbage
Collector in real life?

• How long would it take?

• How much space would it take?

• Are we forgetting anything?

#16

Tracing Reachable Values

• In cool, local variables are easy to find
– Use the environment mapping E
– and one object may point to other objects, etc.

• The stack is more complex
– each stack frame (activation record) contains:

•method parameters (other objects)

• If we know the layout of a stack frame we can
find the pointers (objects) in it

#17

Reachability
Can Be Tricky
• Many things may

look legitimate
and reachable
but will turn out
not to be.

• How can we
figure this out
systematically?

#18

A Simple Example

• Start tracing from local vars and the stack
– they are called the roots

• Note that B and D are not reachable from
local vars or the stack

• Thus we can reuse their storage

A B C

Frame 1 Frame 2

D Elocal var

stack

#19

Elements of Garbage Collection

• Every garbage collection scheme has the
following steps
– Allocate space as needed for new objects
– When space runs out:

– Compute what objects might be used again
(generally by tracing objects reachable from a
set of roots)

– Free space used by objects not found in (a)

• Some strategies perform garbage collection
before the space actually runs out

#20

Mark And Sweep

• Our first GC algorithm
• Two phases:

– Mark
– Sweep

#21

Mark and Sweep

• When memory runs out, GC executes two
phases
– the mark phase: traces reachable objects
– the sweep phase: collects garbage objects

• Every object has an extra bit: the mark bit
– reserved for memory management
– initially the mark bit is 0
– set to 1 for the reachable objects in the mark

phase

#22

Mark and Sweep Example

A B C D Froot E

free

0 0 0 0 0 0

#23

Mark and Sweep Example

A B C D Froot E

free

0 0 0 0 0 0

A B C D Froot E

free

1 0 1 0 0 1
After mark:

#24

Mark and Sweep Example

A B C D Froot E

free

0 0 0 0 0 0

A B C D Froot E

free

1 0 1 0 0 1
After mark:

A B C D Froot E

free

0 0 0 0 0 0

After sweep:

#25

The Mark Phase
let todo = { all roots } (* worklist *)
while todo ≠ ; do
 pick v 2 todo
 todo Ã todo - { v }
 if mark(v) = 0 then (* v is unmarked so far *)
 mark(v) Ã 1
 let v1,...,vn be the pointers contained in v
 todo Ã todo [{v1,...,vn}
 fi
od

#26

The Sweep Phase

• The sweep phase scans the (entire) heap
looking for objects with mark bit 0
– these objects have not been visited in the mark

phase
– they are garbage

• Any such object is added to the free list
• The objects with a mark bit 1 have their mark

bit reset to 0

#27

The Sweep Phase (Cont.)

/* sizeof(p) is size of block starting at p */
p Ã bottom of heap
while p < top of heap do
 if mark(p) = 1 then
 mark(p) Ã 0
 else
 add block p...(p+sizeof(p)-1) to freelist
 fi
 p Ã p + sizeof(p)
od

#28

Mark and Sweep Analysis

• While conceptually simple, this algorithm has
a number of tricky details
– this is typical of GC algorithms

• A serious problem with the mark phase
– it is invoked when we are out of space
– yet it needs space to construct the todo list
– the size of the todo list is unbounded so we

cannot reserve space for it a priori

#29

Mark and Sweep Details

• The todo list is used as an auxiliary data
structure to perform the reachability analysis

• There is a trick that allows the auxiliary data
to be stored in the objects themselves
– pointer reversal: when a pointer is followed it is

reversed to point to its parent

• Similarly, the free list is stored in the free
objects themselves

#30

Mark and Sweep Evaluation

• Space for a new object is allocated from the
new list
– a block large enough is picked
– an area of the necessary size is allocated from it
– the left-over is put back in the free list

• Mark and sweep can fragment memory
• Advantage: objects are not moved during GC

– no need to update the pointers to objects
– works for languages like C and C++

Q: Movies (287 / 842)

•This 1995 Pixar animated film
featured "Forrest Gump" and
"Tim The Tool-Man Taylor".
Initially jealous and resentful,
the two eventually work
together.

Q: TV Music (027 / 842)

•Identify the 1988 Disney
vegetarian who adventures with
Igor and his Nanny and has the
following theme song lyrics: "In
the heart of Transylvania / In
the Vampire Hall Of Fame -
yeah! / There's not a vampire
zanier than ..."

Q: Games (564 / 842)

•In the most "standard version" of
the accumulation card game
known as Egyptian Ratscrew or
Egyptian War, when will you
gain additional cards by
"slapping" the pile?

#34

Another Technique:
Stop and Copy

• Memory is organized into two areas
– Old space: used for allocation
– New space: used as a reserve for GC

old space new space

heap pointer

• The heap pointer points to the next free word in
the old space
• Allocation just advances the heap pointer

#35

Stop and Copy GC

• Starts when the old space is full
• Copies all reachable objects from old space

into new space
– garbage is left behind
– after the copy phase the new space uses less

space than the old one before the collection

• After the copy the roles of the old and new
spaces are reversed and the program resumes

#36

Stop and Copy Garbage
Collection. Example

A B C D Froot E

Before collection:

new space

A C F

root

new space

After collection:

free

heap pointer

#37

Implementing Stop and Copy

• We need to find all the reachable objects
– Just as in mark and sweep

• As we find a reachable object we copy it into
the new space
– And we have to fix ALL pointers pointing to it!

• As we copy an object we store in the old copy
a forwarding pointer to the new copy
– when we later reach an object with a forwarding

pointer we know it was already copied
– How can we identify forwarding pointers?

#38

Implementation of Stop and Copy
• We still have the issue of how to implement

the traversal without using extra space
• The following trick solves the problem:

– partition new space in three contiguous regions

copied and scanned

scan

copied objects
whose pointer
fields were followed
and fixed

copied objects
whose pointer
fields were NOT
followed

emptycopied

allocstart

#39

Stop and Copy. Example (1)

A B C D Froot E new space

• Before garbage collection

start
scan
alloc

#40

Stop and Copy. Example (2)

A B C D Froot E

• Step 1: Copy the objects pointed by roots and
set forwarding pointers (dotted arrow)

A

start
scan

alloc

#41

Stop and Copy. Example (3)

A B C D Froot E

• Step 2: Follow the pointer in the next
unscanned object (A)
– copy the pointed objects (just C in this case)
– fix the pointer in A
– set forwarding pointer

A

scan
alloc

C

start

#42

Stop and Copy. Example (4)

A B C D Froot E

• Follow the pointer in the next unscanned
object (C)
– copy the pointed objects (F in this case)

A

scan
alloc

C F

start

#43

Stop and Copy. Example (5)

A B C D Froot E

• Follow the pointer in the next unscanned
object (F)
– the pointed object (A) was already copied. Set

the pointer same as the forwading pointer

A

scan
alloc

C F

start

#44

Stop and Copy. Example (6)

root

• Since scan caught up with alloc we are done
• Swap the role of the spaces and resume the

program

A

scan
alloc

C Fnew space

#45

The Stop and Copy Algorithm

while scan ≠ alloc do
 let O be the object at scan pointer
 for each pointer p contained in O do
 find O’ that p points to
 if O’ is without a forwarding pointer
 copy O’ to new space (update alloc pointer)
 set 1st word of old O’ to point to the new copy
 change p to point to the new copy of O’
 else
 set p in O equal to the forwarding pointer
 fi
 end for
 increment scan pointer to the next object
od

#46

Stop and Copy Details

• As with mark and sweep, we must be able to
tell how large an object is when we scan it
– And we must also know where the pointers are

inside the object

• We must also copy any objects pointed to by
the stack and update pointers in the stack
– This can be an expensive operation

#47

Stop and Copy Evaluation

• Stop and copy is generally believed to be the
fastest GC technique

• Allocation is very cheap
– Just increment the heap pointer

• Collection is relatively cheap
– Especially if there is a lot of garbage
– Only touch reachable objects

• But some languages do not allow copying
– C, C++, …

#48

Why Doesn’t C Allow Copying?

• Garbage collection relies on being able to find
all reachable objects
– And it needs to find all pointers in an object

• In C or C++ it is impossible to identify the
contents of objects in memory
– e.g., how can you tell that a sequence of two

memory words is a list cell (with data and next
fields) or a binary tree node (with a left and right
fields)?

– Thus we cannot tell where all the pointers are

#49

Conservative Garbage Collection

• But it is OK to be conservative:
– If a memory word “looks like” a pointer it is

considered to be a pointer
• it must be aligned (what does this mean?)
• it must point to a valid address in the data segment

– All such pointers are followed and we
overestimate the reachable objects

• But we still cannot move objects because we
cannot update pointers to them
– What if what we thought to be a pointer is

actually an account number?

#50

Reference Counting

• Rather that wait for memory to be exhausted,
try to collect an object when there are no
more pointers to it

• Store in each object the number of pointers
to that object
– This is the reference count

• Each assignment operation has to manipulate
the reference count

#51

Implementing Reference Counts

• new returns an object with a ref count of 1
• If x points to an object then let rc(x) refer to

the object’s reference count
• Every assignment x Ã y must be changed:

 rc(y) Ã rc(y) + 1
 rc(x) Ã rc(x) - 1
 if (rc(x) == 0) then mark x as free
 x Ã y

#52

Reference Counting Evaluation

• Advantages:
– Easy to implement
– Collects garbage incrementally without large

pauses in the execution
• Why would we care about that?

• Disadvantages:
– Manipulating reference counts at each

assignment is very slow
– Cannot collect circular structures

#53

Garbage Collection Evaluation

• Automatic memory management avoids some
serious storage bugs

• But it takes away control from the
programmer
– e.g., layout of data in memory
– e.g., when is memory deallocated

• Most garbage collection implementation stop
the execution during collection
– not acceptable in real-time applications

#54

Garbage Collection Evaluation

• Garbage collection is going to be around for a
while

• Researchers are working on advanced garbage
collection algorithms:
– Concurrent: allow the program to run while the

collection is happening
– Generational: do not scan long-lived objects at

every collection (infant mortality)
– Parallel: several collectors working in parallel
– Real-Time / Incremental: no long pauses

#55

In Real Life

• Python uses Reference Counting
– Because of “extension modules”, they deem it too

difficult to determine the root set
– Has a special separate cycle detector

• Perl does Reference Counting + cycles
• Ruby does Mark and Sweep
• OCaml does (generational) Stop and Copy
• Java does (generational) Stop and Copy

#56

Homework
• WA7 due Tuesday Apr 08
• For Thursday – Read chapter 8.5
• Midterm 2 – Thursday April 15

– Covers Lectures 10 – 21 and all reading, WAs and
PAs done during that time

