et

COREMTERFAHE

Ifa

CHLE

EiiDAw

Tk EHD

ERTT el

BRI

L

SOC Lah FRENCE

LITTLE

EWE g oo i T A
'-""-"""""-;1'.'.-:.'.
ANTREL .EE...T"
BT R TR

B EnEa

ME DI RE
AEAT AN

EFAR

CHPELS

EmbOR CHEESE

Hor A AT
MELyY SAMEFELLS
DRBOUTI

Vel BHLA

MORERRET

RANT A WEMA,

AAGE N THA

CLERA
BCEL ARD

Wi i s

L LR

OrHfLAAK

WA cascan| FERU

B

FLHIETAN

HWAFPY LERD
B F i,
NCIRGOR P o

[N]

ETHOPGA

BRAE AN

ANTARCTIC EMPFRE

) ML

WOt
EARTH

Fi R Gl A B LA

HELS&LUS

JEF RN

WAL AT ERA

GERAMANT
= EY WA AR
AUETHLE

STUTH HORER
IO, LANID
Ha T seEE

AF AN DETH EOREA
PR ERG

[k A
i

naRaLADEEH
FIDORE S
LA S
BOLMA

B T Svyaiga
CaADRIFY
Py T

Ul pmasion

ALENTREL LK

(LR

(How Not To Do)
Global Optimizations

One-Slide Summary

* A global optimization changes an entire
method (consisting of multiple basic blocks).

« We must be conservative and only apply
global optimizations when they preserve the
original semantics.

 We use global flow analyses to determine if
it is OK to apply an optimization.

* Flow analyses are built out of simple transfer
functions and can work forwards or
backwards.

H#H2

Lecture Outline

* Global flow analysis

* Global constant
propagation

e Liveness analysis

- The Boston Globe - -

INCREDIBLE... NO NEWS

All around the world nothing happened

Rl o T T p——
o P T -

Today like yesterday

Inside Today

Nothing to tell Nothing to nothing
NO N -
NEWS
Boston.co -

m
LT

Local Optimization

Recall the simple basic-block optimizations
- Constant propagation

- Dead code elimination
X :=3 X:=3

yizzxw D ..y EE 7.y
Qi =X+Y Q:i=3+Y Q:=3+Y

&0, WHEN You
by ORENAL,
YOoU ACTUBALLY
MEAN.. 7
MORE OF THE

ShME, BUT
DIFFERENT,

M MUST BE
HEW AND SROUND

..BUT HOT Too

YOUR THESIS MUST ORIGINAL 1| CANT

BE AN ORIGINAL BREAKING, VET |
MAKE SURE You
PIECE OF WORK. DhkKE SuRe FoLLow THE cAMe
ME. SIoN ARD. PROTD

COLS | ESTARLICHED
DECADES A0,

i

JORGE CHAM

WWW, PHDCOMICS, COM #4

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X:=3
B>0
Yi=Z+W Yi=0

H#H5

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X:=3
B>0
Yi=Z+W Yi=0

H#H6

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X:=3
B>0
Yi=Z+W Yi=0

H7

Correctness

 How do we know it is OK to globally
propagate constants?

e There are situations where it is incorrect:

(X:=3
B>0
Yi=Z+W Yi=0

H#H8

Correctness (Cont.)

To replace a use of x by a constant k we must
know this correctness condition:

On every path to the use of x, the last
assignment to x is x :=k **

Test:

1. What impertant event Yook
place on December 16, 17737

I do Not BELIEVE iM LiNEAR
TiME. THERE 1% Mo Past and
futuRE: all 15 ONE, aMd
EXiSTENCE M tHE YEMPoRal SEMSE
i% IRLUSeRY, THS QUESHOoN,
HEREFoRE, 15 MEAN|NGLESS and
MpossiBLE Yo ANSER .

qlfr%
L

I .ﬂ*ﬁi‘

{ ml.Eu. M DOUBT,
'1 ALl TEEMS
hHT:I DEFIHITIONS

Example 1 Revisited

#10

Example 2 Revisited

(X:=3
B>0 \
/\\
Yi=Z+W Yi=0

(=42 %ﬁ/
> A:z2*X

H#11

Discussion

e The correctness condition is not trivial to
check

o “All paths” includes paths around loops and
through branches of conditionals

e Checking the condition requires global
analysis

- Global = an analysis of the entire control-flow
graph for one method body

H#12

Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property
P at a particular point in program execution

- Proving P at any point requires knowledge of the
entire method body

- Property P is typically undecidable!

i i Word cannot edit the Unknown.

Undecidability
of Program Properties

* Rice’s Theorem: Most interesting dynamic
properties of a program are undecidable:
- Does the program halt on all (some) inputs?
e This is called the halting problem

- Is the result of a function F always positive?
e Assume we can answer this question precisely

o Take function H and find out if it halts by testing function F(x)
{ H(x); return 1; } whether it has positive result

e Contradition!
e Syntactic properties are decidable!
- e.g., How many occurrences of “x” are there?

* Programs without looping are also decidable!

#14

Conservative Program Analyses

* S0, we cannot tell for sure that “x” is always 3
- Then, how can we apply constant propagation?

* It is OK to be conservative.

’

¥

#15

Conservative Program Analyses

* S0, we cannot tell for sure that “x” is always 3
- Then, how can we apply constant propagation?

e |t is OK to be conservative. If the optimization
requires P to be true, then want to know either

- P is definitely true
- Don’t know if P is true

e Let's call this truthiness E |
i
(\,ii

: "‘:\‘

N

" Truthiness

Conservative Program Analyses

So, we cannot tell for sure that “x” is always 3
- Then, how can we apply constant propagation?

It is OK to be conservative. If the optimization
requires P to be true, then want to know either
- P is definitely true

- Don’t know if P is true

It is always correct to say “don’t know”
- We try to say don’t know as rarely as possible

All program analyses are conservative

H#17

Global Optimization: Review

X:=3
B>0

/\

Yi=Z+W Yi=0

\/

A=2*X

#18

Global Optimization: Review

X:=3
B>0

/\

Yi=Z+W Y

=0

X:=3
B>0
Yi=Z+W Yi=0

\/

A=2%*3

X:=4 /

A=2*X

#19

Global Optimization: Review

X:=3
B>0

4/\

4/\

Yi=Z+W Y

=0

\/

A=2%*3

Yi=Z
X:i=4

+ W Y:=0

\\/
A=2*3 ’

* To replace a use of x by a constant k we

must know that:

On every path to the use of x, the last
assignment to xis x ;= k **

#20

Review

e The correctness condition is hard to check

» Checking it requires global analysis

- An analysis of the entire control-flow graph for
one method body

 We said that was impossible, right?

I CAN COME BACK LATER
IF YOU NEED TIME TO
CONCOCT ADDITIONAL

UNINFORMED
CRITICISMS.

\ 17

o W [~

THAT DESIGN IS
ALREADY WIDELY USED
IN THE REAL WORLD.

THIS DESIGN WILL
MEVER LJORK IN
THE REAL WORLD.

J
T/

CI""""""
R §
J 3 gl JI | i ! I
© Scott Adams, Inc./Dist. by UFS, Inc.

2008 Scott Adams, Inc./Dist by UFS, Ins.

wwnardilbert.com scotindama®aol. com

3
3

H#21

Global Analysis

* Global dataflow analysis is a standard
technique for solving problems with these
characteristics

* Global constant propagation is one example
of an optimization that requires global
dataflow analysis

H22

Global Constant Propagation

* Global constant propagation can be
performed at any point where ** holds

e Consider the case of computing ** for a single
variable X at all program points

e Valid points cannot hide!
 We will find you!

- (sometimes)

DISGUISE SKILL

Global Constant Propagation

 To make the problem precise, we associate
one of the following values with X at every
program point

(Cont.)

value

interpretation

#

This statement is
not reachable

X = constant c

Don’t know if X is
a constant

#24

Example

Let's do it on the board!

— X=*
X:=3 — X =
B>0
X= — — X =
Yi=Z+W Y:=0
X= —
X:=4 -/<—X:
Xz — X =
A=2*X

Recall: # = not reachable, ¢ = constant, * = don't know.

H#25

X

Example Answers

X=3—

Yi=Z+W
X =4

X:=3
B>0

?l<u
)

H#26

Using the Information

e Given global constant information, it is easy
to perform the optimization

- Simply inspect the x = ? associated with a
statement using x

- If x is constant at that point replace that use of x
by the constant

e But how do we compute the properties x = ?

H#H27

The ldea

The analysis of a complicated program can
be expressed as a combination of simple
rules relating the change in information

between adjacent statements

SMETMES T FREEL LWWE QUR
LIFE HAS GOTTEN TOO COMAL-
CATED,. THAT WEVE ACCUMIALMTED

WELL, THOREM SA1S, " SIMPLIFY,
SIMPLIFY." MAR{BE wE NEED

Explanation

 The idea is to “push” or “transfer”
information from one statement to the next

e For each statement s, we compute
information about the value of x immediately
before and after s

C..(x,s) = value of x before s
C...(X,s) = value of x after s

#29

Transfer Functions

e Define a transfer function that transfers
information from one statement to another

#30

Rule 1

l — X =

S
l — X=X

C..(X,s)=#1fC (x,s)=#

H#31

Rule 2

X
N

X
o

C...(X, X :=c)=c if cis a constant

#32

#33

Rule 4

#34

The Other Half

e Rules 1-4 relate the in of a statement to the out
of the same statement
- they propagate information across statements

 Now we need rules relating the out of one
statement to the in of the successor statement

- to propagate information forward across CFG edges

* |In the following rules, let statement s have
immediate predecessor statements p.,...,p.

H#35

if C_.(x, p;) = * forsome i, thenC, (x,s) ="

H#36

if Co (X, p)=c and C (X, p;) =d and d#c
then C_(x,s)="

H#37

if C_.(x, p;) =c or# foralli,
then C. (X, s) =cC

H#38

Rule 8

X = #

XW#
— X=X
s

if C_.(x, p;) =# for alli,
then C (x,s) =#

#39

An Algorithm

For every entry s to the program, set
C.(x,s)="

Set C. (X, s) = C_,.(X, s) = # everywhere else

Repeat until all points satisfy 1-8:

Pick s not satisfying 1-8 and update using the
appropriate rule

H#40

The Value #

 To understand why we need #, look at a loop

XV\X:‘?

Y=Z+W

B>0

X:=3 ‘

X=*
— X=3

Y:=0

H#41

The Value #

 To understand why we need #, look at a loop

H#HA42

The Value # (Cont.)

* Because of cycles, all points must have values
at all times during the analysis

 Intuitively, assigning some initial value allows
the analysis to break cycles

e The initial value # means “so far as we know,
control never reaches this point”

HA43

Sometimes
all paths
lead to the
same place.

Thus you
need #.

#44

Example

< Xz=*
X:=3 |__ X:f}(g

We are done
when all rules
are satisfied !

#H45

Another Example

X:=3 Let's do it on the board!

Yi=Z+W

#46

Another Example: Answer

X=*

— X:%j’

—X = % 4 Must continue

until all rules
are satisfied !

Ha47

Orderings

 We can simplify the presentation of the
analysis by ordering the values

< Cc < *

Drawing a picture with “lower” values drawn
lower, we get

#48

Orderings (Cont.)

* *is the greatest value, # is the least
- All constants are in between and incomparable

e Let [ub be the least-upper bound in this
ordering

e Rules 5-8 can be written using lub:
C..(x,s)=lub { C (X, p) | pisapredecessor of s }

#49

Termination

o Simply saying “repeat until nothing changes”
doesn’t guarantee that eventually nothing
changes

* The use of lub explains why the algorithm
terminates

- Values start as # and only increase
- # can change to a constant, and a constant to *
- Thus, C_(x, s) can change at most twice

#50

Number Crunching

Thus the algorithm is linear in program size:
Number of steps =

Number of C_{(....) values computed * 2 =
Number of program statements * 4

#51

Liveness Analysis

Once constants have been globally propagated, we
would like to eliminate dead code

X:=3
B>0
— 7\
Y=Z+W Y:=0
A=2*X

After constant propagation, X := 3 is dead ?
(assuming this is the entire CFG)

#52

Live and Dead

e The first value of x is X = 3
dead (never used)

» The second value of x is = 4
live (may be used)
. . . v
 Liveness is an important V= X

concept

#53

Liveness

A variable x is live at statement s if
- There exists a statement s’ that uses x

- There is a path from s to s’

- That path has no intervening assignment to x

#54

Global Dead Code Elimination

e A statement x := ... is dead code if x is dead
after the assignment

e Dead code can be deleted from the program
e But we need liveness information first . . .

Should have put more points in it, eh?

#55

Computing Liveness

 We can express liveness in terms of
information transferred between adjacent
statements, just as in constant propagation

e Liveness is simpler than constant propagation,
since it is a boolean property (true or false)

H#H56

Liveness Rule 1

— X = true

1
— X
+

L. (X, s) = true if s refers to x on the rhs

#57

Liveness Rule 2

L. (X, x := e) = false if e does not refer to x

#58

Liveness Rule 3

J' — X-=-a

S
l — X-=-a

L. (X, s) = L,.(x, s)if s does not refer to x

#59

Liveness Rule 4

p

/\X: i

X=2 X=2 X = true X=2

L..(x, p) = O{L.(X,s) | sasuccessor of p }

#60

Algorithm

 Letall L_(...) = false initially

e Repeat process until all statements s satisfy
rules 1-4 :

Pick s where one of 1-4 does not hold and update
using the appropriate rule

#61

Liveness Example

o 3 L(X) = false
B0 L(X) = false

L(X) = false /\L(}f} = false

Vi=Z+W Y:=0 :__LIX):fG/Se

L(X) = false \A) = false

X 1= X * X +~— L(X) = false
X iz 4 +—L(X) = false
A<B +~— L(X) = false

~— L(X) = false

#62

Liveness Example Answers

Yi=Z+W

szﬁ%Z#;\:>\\\“///¢:ab:@%e#w
X
Dead code /L

X :=

X:=3
B>0

L(X) = false

—L(X) = faike true

4—100:m&2#w

ux#%%wﬂﬁl;;>/”\\\\\\$

Yi=0

;:iQO:m&B#w

= X*X
4
A<B

— L(X) = fake true
+—L(X) = false

4—100:@&2 true

— L(X) = folse

H#63

Liveness Example Answers

Also dead code?—_

*X =3

B>0

L(X) = false

—L(X) = faike true

Yi=Z+W

L&Wﬁa@f;;§:>\\\“///¢:gb:@%e#w

4—100:m&2#w

LOO:@@HTE’:://**\\\\\\$

Yi=0

;:iQO:m&B#w

X
Dead code /L

X :=

= X*X
4
A<B

— L(X) = fake true
+—L(X) = false

4—100:@&2 true

— L(X) = folse

#64

Termination

* A value can change from false to true, but not
the other way around

e Each value can change only once, so
termination is guaranteed

* Once the analysis is computed, it is simple to
eliminate dead code

#65

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a forwards analysis:
information is pushed from inputs to outputs

Liveness is a backwards analysis: information is
pushed from outputs back towards inputs

#66

Analysis Analysis

 There are many other global flow analyses

e Most can be classified as either forward or
backward

* Most also follow the methodology of local
rules relating information between adjacent
program points

H67

Homework

e WA6 Due Tuesday

e Read chapter 7.7
- Optional David Bacon article

o Midterm 2 - Tue Apr 15

#68

