Parking
For

Drive-Thru| =
Service '

Moreonly

2

Statlc

One-Slide Summary

e Typing rules formalize the semantics checks
necessary to validate a program. Well-typed
programs do not go wrong.

* Subtyping relations (<) and least-upper-bounds
(lub) are powerful tools for type-checking dynamic
dispatch.

o We will use SELF_TYPE_ for “C or any subtype of C”.

It will show off the subtlety of type systems and
allow us to check methods that return self objects.

H#H2

Lecture Outline

e Typing Rules

e Dispatch Rules
- Static
- Dynamic

e SELF_TYPE

H#3

Assignment

What is this thing? What’s -? O? <7

O(id) =T,

OFe, : T,

T <T,
OFid<+ e : T,

[Assign]

HA4

Initialized Attributes
e Let O.(x) = T for all attributes x:T in class C

- O, represents the class-wide scope

e we “preload” the environment O with all attributes

o Attribute initialization is similar to let, except
for the scope of nhames

O.(id) =T,
O e T,
T, <T,
O Fid: T,+ e, ;

[At+r-Init]

H#H5

If-Then-Else

« Consider: if e, then e, else e, fi
e The result can be either e, or e,
« The dynamic type is either e,’s or e,’s type

 The best we can do statically is the smallest
supertype larger than the type of e, and e,

Wavne Hart’s 5-day forecast

Partly Cloudy Partly Cloudy

Watch NEWS 25 for weather changsas throughout the day #6

Partly Cloudy,
W

If-Then-Else example

e Consider the class hierarchy
P
/N
A B

e ... and the expression
if ... then new A else new B fi

o Its type should allow for the dynamic type to
be both A or B

- Smallest supertype is P

H7

Least Upper Bounds

e Define: lub(X,Y) to be the least upper bound
of Xand Y. lub(X,Y) is Z if
- X<IANYLLZ
Z is an upper bound
- X<Z2ANYLZ 0O L7

L is least among upper bounds

* In Cool, the least upper bound of two types is
their least common ancestor in the
inheritance tree

H#H8

If-Then-Else Revisited

O e, : Bool
OF e, : T,
OFe,:T,

- if e, then e, else e, fi : lub(T,, T,)

[If-Then-Else]

H#O

Case

* The rule for case expressions takes a lub over
all branches
OFe,:T,
Oo[T,/x,]JF-e, : T/

O[T /x]Fe, :T'
[Case]

O |- case e, of x,: T, = e,;

’

ey X T = e ;esac: lub(T,,..,T.’)

#10

Method Dispatch

* There is a problem with type checking
method calls:
OFe,:T,
OF e, :T,

OF €, . Tn [DiSpGTCh]
OF e,f(e,,..e):?

e We need information about the formal
parameters and return type of f

H#11

Notes on Dispatch

 |n Cool, method and object identifiers live in
different name spaces

- A method foo and an object foo can coexist in
the same scope

* In the type rules, this is reflected by a
separate mapping M for method signatures:

M(C,f) = (T,,. . .T.,T)
means in class C there is a method f
f(X,:T,,. o X T)T,

H#12

An Extended Typing Judgment

e Now we have two environments: O and M

e The form of the typing judgment is
O,MFe: T

read as: “with the assumption that the object
identifiers have types as given by O and the
method identifiers have signatures as given by
M, the expression e has type T”

#13

The Method Environment

e The method environment must be added to

all rules

e In most cases, M is passed down but not
actually used

- Example of a rule that does not use M:

O,
O,

MFe :T.
MFe, :T,

O, M

[Add]
- e, +e,:Int

- Only the ¢

ispatch rules uses M
#14

The Dispatch Rule Revisited

Check receiver
O, M- € - To } object e,
O,MIFe, : T, h
>Check actual
arguments

O,Me T,
_ ’ Look up formal
M(TO’ f) = (T1 peees T Tn+1) j>argument types T,’
T.<T/’ (for 1<i<n)

[Dispatch]
O, MF e,f(e,..,e):T.,’

#15

Static Dispatch

o Static dispatch is a variation on normal
dispatch

 The method is found in the class explicitly
named by the programmer (not via e,)

e The inferred type of the dispatch expression
must conform to the specified type

#16

Static Dispatch (Cont.)
O,MIFe,: T,
O,MFe, : T,

O,MFe : T,
T,<T
M(T f) - (T1 ’° ’ Tn+1’)
T.<T/’ (for1 gign)

[StaticDispatch]
O, M+ e,@T.f(e,,..,e): T .’

H#17

How should

we handle
SELF TYPE ?

| DON'TASK ME |

I'M MAKING
THIS UP AS | GO! |

Flexibility vs. Soundness

e Recall that type systems have two conflicting
goals:

- Give flexibility to the programmer

- Prevent valid programs from “going wrong”
e Milner, 1981: “Well-typed programs do not go wrong”

e An active line of research is in the area of
inventing more flexible type systems while
preserving soundness

#19

Dynamic And Static Types

 The dynamic type of an object is ?
 The static type of an expression is ?
e You tell me!

[Lion't ask me again

‘ D I Tes ‘ MNo ‘ Cancel

#20

Dynamic And Static Types

 The dynamic type of an object is the class C
that is used in the “new C” expression that
created it

- A run-time notion
- Even languages that are not statically typed have
the notion of dynamic type
e The static type of an expression is a notation
that captures all possible dynamic types the
expression could take

- A compile-time notion
H#21

Soundness

Soundness theorem for the Cool type system:
O E. dynamic_type(E) < static_type(E)

Why is this OK?
- All operations that can be used on an object of type C
can also be used on an object of type C’ < C
e Such as fetching the value of an attribute
e Or invoking a method on the object

- Subclasses can only add attributes or methods
- Methods can be redefined but with same type!

H22

An Example

class Count { e Class Count
i:int - O; incorporates a counter

inc () : Count { | The inc method works

{
i i+ 1; for any subclass
self; WEIRD — MY CODES CRASHING
} WHEN GIVEN PRE-I1970 DATES.
¥i e But there is EFOCH FALL

X disaster lurking in
the type system! %@

Continuing Example

e Consider a subclass Stock of Count

class Stock inherits Count {
name() : String { ...}; -- name of item

}i
* And the following use of Stock:

class Main {
a : Stock -~ (new Stock).inc (); Type checking
. a.name() ... error |

}i

#24

Post-Mortem

(new Stock).inc() has dynamic type Stock

So it is legitimate to write
a . Stock «+ (new Stock).inc ()

But this is not well-typed
(new Stock).inc() has static type Count

The type checker “loses” type information

This makes inheriting inc useless

- So, we must redefine inc for each of the subclasses,
with a specialized return type

H#25

ONLINE GAMING

Get your excuses ready beforehand.
You're going to need them.

| Need A Hero!

Type Systems

One tool. One million uses.

H#H27

SELF TYPE to the Rescue

 We will extend the type system

* |nsight:

inc returns “self”

Therefore the return value has same type as “self”
Which could be Count or any subtype of Count!

In the case of (new Stock).inc() the type is Stock

 We introduce the keyword SELF_TYPE to use for the

return value of such functions
- We will also modify the typing rules to handle SELF_TYPE

#28

SELF_TYPE to the Rescue (2)

o SELF_TYPE allows the return type of inc to
change when inc is inherited

* Modify the declaration of inc to read
inc() : SELF_TYPE {...}
* The type checker can now prove:
O, M F (new Count).inc() : Count
O, M (new Stock).inc() : Stock

e The program from before is now well typed

#29

SELF TYPE: Binford Tools

 SELF_TYPE is not a dynamic type
e SELF_TYPE is a static type

o It helps the type checker to keep better track
of types

* It enables the type checker to accept more
correct programs

 In short, having SELF_TYPE increases the
expressive power of the type system

#30

SELF_TYPE and Dynamic Types
(Example)
 What can be the dynamic type of the object

returned by inc?

- Answer: whatever could be the type of “self”

class A inherits Count { } ;
class B inherits Count { } ;
class C inherits Count { };

(inc could be invoked through any of these classes)

- Answer: Count or any subtype of Count

H#31

SELF_TYPE and Dynamic Types
(Example)

e In general, if SELF_TYPE appears textually in
the class C as the declared type of E then it
denotes the dynamic type of the “self”
expression:

dynamic_type(E) = dynamic_type(self) < C

* Note: The meaning of SELF_TYPE depends on
where it appears

- We write SELF_TYPE. to refer to an occurrence
of SELF_TYPE in the body of C

#32

Type Checking

e This suggests a typing rule:
SELF_TYPE. < C

e This rule has an important consequence:
- In type checking it is always safe to replace
SELF_TYPE, by C
e This suggests one way to handle SELF_TYPE :
- Replace all occurrences of SELF_TYPE. by C

e This would be correct but it is like not having
SELF_TYPE at all (whoops!)

#33

Operations on SELF_TYPE

* Recall the operations on types
- T, <T, T, is a subtype of T,
- lub(T,,T,) the least-upper bound of T, and T,

« We must extend these operations to handle
SELF_TYPE — -

» Might take some time ... kd

#34

Q: Games (503 / 842)

e This 1983 adventure game desighed
by Roberta Williams described Sir
Graham's attempts to recover the
three magical treasures of Daventry
and become the next king. [t
featured a parser for simple textual
commands (e.g., "get carrot”) and
spawned numerous sequels.

Q: Movies (316 / 842)

e Name the star and the 1990
holiday film that features Joe
Pesci and Daniel Stern as the
"Wet Bandits" and a child, too
young to shave, who defends a
house.

Q: Books (745 / 842)

« Name the 1965 Frank Herbert sci-
novel that features sandworms, the
house Harkonnen, and the quote
"What's in the box? / Pain.” It won
the Hugo and Nebula awards and
usually considered the best-selling
sci-fi novel of all time.

Q: Movies (292 / 842)

 From the 1981 movie Raiders of
the Lost Ark, give either the
protagonist's phobia or composer
of the musical score.

Extending <

Let T and T’ be any types except SELF_TYPE
There are four cases in the definition of <
e SELF_TYPE. ST ifC<T

o SELF_TYPE, can be any subtype of C

 This includes C itself
 Thus this is the most flexible rule we can allow

e« SELF_TYPE. < SELF_TYPE,
o SELF_TYPE, is the type of the “self” expression

* In Cool we never need to compare SELF_TYPEs
coming from different classes

#39

Extending < (Cont.)

o T <SELF_TYPE, always false
Note: SELF_TYPE, can denote any subtype of C.

« T < T (according to the rules from before)

Based on these rules we can extend lub ...

H#40

Extending lub(T,T’)

Let T and T’ be any types except SELF_TYPE

Again there are four cases:
o |ub(SELF_TYPE., SELF_TYPE.) = SELF_TYPE,

o |Ub(SELF_TYPE,, T) = lub(C, T)
This is the best we can do because SELF_TYPE. < C

o lub(T, SELF_TYPE,) = lub(C, T)

o lub(T, T’) defined as before

H#41

Where Can SELF TYPE

Appear in COOL?

The parser checks that SELF_TYPE appears
only where a type is expected

But SELF_TYPE is not allowed everywhere a
type can appear:

class T inherits T’ {...}

e T, T’ cannot be SELF_TYPE

 Because SELF_TYPE is never a dynamic type
X:T

T can be SELF_TYPE

o An attribute whose type is SELF_TYPE_

H#HA42

Where Can SELF TYPE

Appear in COOL?

1. letx: TinE
e T can be SELF TYPE
« X has type SELF_TYPE,

2. new T

e T can be SELF_TYPE
 (Creates an object of the same type as self

e m@TI(E,,...,E.)
e T cannot be SELF TYPE

HA43

Typing Rules for SELF_TYPE

 Since occurrences of SELF_TYPE depend on
the enclosing class we need to carry more
context during type checking

 New form of the typing judgment:
OMClLe:T

(An expression e occurring in the body of C

has static type T given a variable type
environment O and method signhatures M)

#44

Type Checking Rules

 The next step is to design type rules using
SELF_TYPE for each language construct

e Most of the rules remain the same except
that < and lub are the new ones

« Example: O(id) = T,

OMCHe, :T,
T, <T,

OMCHid<« e : T,

#45

What’s Different?

e Recall the old rule for dispatch
OMCle,: T,

O,M,Clke :T,
M(T,, f) = (T, T.', T.0)")
T ..”# SELF_TYPE
T<T' 1<i<n

O,M,CI e,.f(e,...,e):T,.,

#46

What’s Different?

e If the return type of the method is SELF_TYPE
then the type of the dispatch is the type of
the dispatch expression:

OMCle,: T,

OMClHe :T.
M(T,, f) = (T,,...,T.", SELF_TYPE)

T,<T/ 1<i<n
O,M,Ct e,.f(e,...,e,) : T,

Ha47

What’s Different?

e Note this rule handles the Stock example
 Formal parameters cannot be SELF_TYPE

o Actual arguments can be SELF_TYPE
- The extended < relation handles this case

e The type T, of the dispatch expression could

be SELF_TYPE

- Which class is used to find the declaration of f?

- Answer: it is safe to use the class where the
dispatch appears

#48

Static Dispatch

e Recall the original rule for static dispatch
OMClLe,:T,

OMChe :T,
T,<T
M(TI f) = (T1’I"'ITn’ITn+1’)
T ., ”# SELF_TYPE
T,<T/ l<i=n
O,M,Ct+ e,@T.f(e,..,e,) :T,,,

#49

Static Dispatch

 If the return type of the method is SELF_TYPE

we have:
OMCle,: T,

OMChe :T,

T,<T
M(T, f) = (T,,...,T.",SELF_TYPE)
T <T' 1<i<n

O,M,Ct e, @T.f(e,...,e,) : T,

#50

Static Dispatch

 Why is this rule correct?

 If we dispatch a method returning SELF_TYPE
in class T, don’t we get back a T?

 No. SELF_TYPE is the type of the self
parameter, which may be a subtype of the
class in which the method body appears

- Not the class in which the call appears!
e The static dispatch class cannot be SELF_TYPE

#51

New Rules

 There are two new rules using SELF_TYPE

O,M,C+ self : SELF_TYPE_

O,M,CI new SELF_TYPE : SELF_TYPE_

 There are a number of other places where
SELF_TYPE is used

#5292

Where is SELF TYPE

Illegal in COOL?

mx: T): T {..}
e Only T’ can be SELF_TYPE !

What could go wrong if T were SELF_TYPE?

class A { comp(x : SELF_TYPE) : Bool {...}; };
class B inherits A {

b():int{...};
comp(y : SELF_TYPE) : Bool { ... y.b() ...}; }/

letx: A -« newBiIn ... x.comp(new A); ...

#53

Summary of SELF_TYPE

 The extended < and lub operations can do a

lot of the work. Implement them to handle
SELF_TYPE

o SELF_TYPE can be used only in a few places.
Be sure it isn’t used anywhere else.

e A use of SELF_TYPE always refers to any
subtype in the current class

- The exception is the type checking of dispatch.

- SELF_TYPE as the return type in an invoked
method might have nothing to do with the current

class
#54

Why Cover SELF_TYPE ?

o SELF_TYPE is a research idea
- |t adds more expressiveness to the type system

o SELF_TYPE is itself not so important
- except for the project

e Rather, SELF_TYPE is meant to illustrate that
type checking can be quite subtle

 In practice, there should be a balance
between the complexity of the type system
and its expressiveness

#55

Type Systems

e The rules in these lecture were Cool-specific
- Other languages have very different rules
- We’ll survey a few more type systems later

e General themes
- Type rules are defined on the structure of expressions
- Types of variables are modeled by an environment

» Types are a play between flexibility and safety

H#H56

Homework

e No WA due this week
e No PA due this week
e PAA/WA4 Checkpoint Due Wed Mar 19

* For Next Time: Read Chapters 8.1-8.3
- Optional Grant & Smith

#57

