

Passing Out Review Forms

Ask a Question:

lphp java
Searching All Tapics

1 Results Returned

How do I install the Pure Java SDK and run the example?

fnswer: Install the pure java SDK and run the example

Location: http://knowledge.paypal.com/paypal/solution.jsp?id=vs13893
Solution ID: vs13883
(6K)

.,-L.r-ﬂ:'i

"I fike you Harry — even when
your bead's on fire you don't complain.”

H#2

One-Slide Summary

o A type environment gives types for free
variables. You typecheck a let-body with an
environment that has been updated to
contain the new let-variable.

 If an object of type X could be used when one
of type Y is acceptable then we say X is a
subtype of Y, also written X < Y.

* A type system is sound if [1 E.
dynamic_type(E) < static_type(E)

H#3

Lecture QOutline

Typing Rules

Typing Environments
“Let” Rules
Subtyping

Wrong Rules

H#HA4

Example: 1 + 2

- 1

: Int -2

Int

F1+2:Int

H#H5

If we can
prove it, then
it's true!

e

Soundness

e A type system is sound if

- Whenever Fe: T
- Then e evaluates to a value
of type T

* We only want sound rules

- But some sound rules are
better than others:
(i is an integer)

1 : Object

THE BAS5 FROM
THATCAR 1S
DRIVING ME NUTS.

ME T00.
GNE ME A
HAND HERE.

THOMPA
TH umpﬁf

19

IM AFRAID

THIS SYSTEM DETECTS

BASS RHYTHMS AND

FLOODS THE TARGET
" WITH A PHASE-SHIFTED
REPLICA SIGNAL.

D THE HEEmLNCE SHOULD

MPA | | e
WA
ESWLE il

OKAY. Now THROW
THE SW/ITCH LABELED
“MACARENA®

Type Checking Proofs

* Type checking proves factse : T
- One type rule is used for each kind of expression

 In the type rule used for a node e

- The hypotheses are the proofs of types of e’s
subexpressions

- The conclusion is the proof of type of e itself

H7

Rules for Constants

- false : Bool [Bool]
: [String]
s 2 String (s is a string

constant)

H#H8

Rule for New

new T produces an object of type T
- lgnore SELF_TYPE for now . . .

[New]
FnewT: T

H#O

Two More Rules

- e : Bool [Not]
- not e : Bool

- e, : Bool
Fe,: T

[Loop]

- while e, loop e, pool : Object

#10

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool

H#11

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool

hot

false

H#12

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool

hot

false : Bool

#13

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not : Bool +

v \

false : Bool

#14

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not : Bool +

N

false : Bool 1

#15

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not : Bool +

N

false : Bool 1:Int

#16

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not : Bool +

N

false : Bool 1:Int *

2

H#17

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not : Bool +

N

false : Bool 1:Int *

2 . Int

#18

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not : Bool +

N

false : Bool 1:Int *

2 . Int 3

#19

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not : Bool +

N

false : Bool 1:Int *

2:Int 30 Int

#20

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not : Bool +

fa

v

N

se : Bool 1 :Int x o+ Int

e

2:Int 3¢ Int

H#21

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not : Bool + Int

fa

v

N

se : Bool 1 :Int x o+ Int

e

2:Int 3¢ Int

H22

Typing: Example

 Typing for while not false loop 1 + 2 * 3 pool

while loop pool : Object

>

not : Bool + :Int

I T

false : Bool 1:Int x ¢ Int

T

2 : Int 3+ Int

#23

Typing Derivations

e The typing reasoning can be expressed as a

tree:;
F 2 :Int F 3:Int

I false : Bool F1:Int F2*3:Int

I not false : Bool F1+2%*3:Int

I while not false loop 1 + 2 * 3 : Object

e The root of the tree is the whole
expression

e Each node is an instance of a typing rule
» Leaves are the rules with no hypotheses

A Problem

 What is the type of a variable reference?

[Var] (xisan
F x:? identifier)

* The local structural rule does not carry
enough information to give x a type. Fail.

.’.‘.‘.. a

H#25

A Solution: Put more

information in the rules!

e A type environment gives types for free
variables

- A type environment is a mapping from
Object_ldentifiers to Types

- A variable is free in an expression if:

* The expression contains an occurrence of the variable
that refers to a declaration outside the expression

“ b

- in the expression “x”, the variable is free

€, =

-in “let x : Intin x + y” only “y” is free
-in “x + let x : Int in x + y” both “x”, “y” are free

H#26

Type Environments

Let O be a function from Object_ldentifiers to
Types

The sentence OF e : T

is read: Under the assumption that variables
have the types given by O, it is provable that
the expression e has the type T

H#H27

Modified Rules

The type environment is added to the earlier
rules:

[Int]
OFi:Int (i is an integer)

OF e, :Int

OFe +e,:Int

#28

New Rules

And we can write new rules:

[Var] (O(x)=T)

OF x:T

Equivalently:

O(X) =T [Var]
OFx:T

#29

Let

OlT/xIF e : Ty [Let-No-Init]
OFletx:T,ine, : T,

O[T,/x] means “O modified to map x to T, and
behaving as O on all other arguments”:
O[T,/x] (x) =T,
O[T,/x] (y) = O(y)

(You can write O[x/T,] on tests/ assignments.)30

Let Example

» Consider the Cool expression
letx: Tyin (lety:T,inE) + (letx:T,inF_)
(where E, and F, are some Cool expression that

€., €, ,9

contain occurrences of “x” and “y”)
e Scope
- of “y”isE |
- of outer “x” s E_ |
- of inner “x” is F_

e This is captured precisely in the typing rule.

H#31

Example of Typing “let”

AST let x : TO In \
+
IeTy:TlinJ let x : T, in
E,,
X

#32

Example of Typing “let”

AST OF letx:T,in
Type env. \
+
Ie‘ry:Tlinl let x : T, in
E,,
Fr

#33

Example of Typing “let”

éfp-‘; o OF letx:T,in \
O\['I';/x] -+
/\>
Ie‘ry:Tlinl let x : T, in
E,, w
Fr

#34

Example of Typing “let”

AST OF letx: T,in
Type env. \ \
O[T/x]F +
O[Ty/x]F lety: T, inl O[T,/x]tlet x: T,in
E,,
F.,

#35

Example of Typing “let”

AST OI—Ie’rx:Toin\

Type env. \

O[TO/X] = +

Y T

O[Ty/x]F lety: T, inl O[T,/x]tlet x: T,in

.

(O[T/xDIT/yl- E

XY

X

H#36

Example of Typing “let”

AST OI—Ie’rx:Toin\

Type env. \

O[TO/X] = +

Y T

O[Ty/x]F lety: T, inl O[T,/x]tlet x: T,in

.

(OLT/XDIT /Y] E

XY

(O[T/xDIT/yl = x

H#37

Example of Typing “let”

AST OI—Ie’rx:Toin\

Type env. \

O[TO/X] = +

Y T

O[Ty/x]F lety: T, inl O[T,/x]tlet x: T,in

.

(O[T/xDIT/ylF E,, \

(O[T/xDIT/x]+ F,.

OIT/XDITAYIF

H#38

Example of Typing “let”

Type env. \

AST OI—IeTx:TOin\
Types

O[T/x]F +

Y T

O[Ty/x]F lety: T, inl O[T,/x]tlet x: T,in

\
(O[TO/X]?[T/Y] - E>_<,Y

(OIT/xDIT/x]+- F,,

(O[To/xDIT/YIF X : T,

L

.

........
. .
........

......

#39

Example of Typing “let”

AST OF letx:T,in
Type env. \ \
Types O[Ty/x]F +
O[Ty/x]F lety: T, inl O[T,/x]tlet x: T,in

(OlTo/xDIT/ylF E,, :int \

-/ (OIT/xDIT/XIF Fy,
(OITo/xDIT/YIF x & T,

L

.

........
. .
........

......

H#40

Example of Typing “let”

AST OF letx:T,in
Type env. \ \
Types O[Ty/x]F +

Y T

O[Ty/x]F lety: T, inl tint O[T,/x]kHletx:T,in

.

(OlTo/xDIT/ylF E,, :int \

(OIT/xDIT/x]+- F,,

(OLTo/XDIT/YIF x & T,

L

.

........
. .
........

......

H#41

Example of Typing “let”

AST OF letx: T,in
Type env. \ \
Types O[Ty/x]F +

Y T

O[Ty/x]F lety: T, inl pint O[Ty/x]Flet x: T,in

(OlTo/xDIT/ylF E,, :int \

(O[To/x])[TZ/x]F F,, +int

(OLTo/XDIT/YIF x & T,

e

0

......
.........
. . . .
. . .
......

..............................
. w
..........................

H#HA42

Example of Typing “let”

AST OF letx:T,in
Type env. \ \
Types O[T./x]F +

Y T

O[Ty/x]F lety: T, inl tint O[T,/x]rletx:T,in, ‘int

(OlTo/xDIT/ylF E,, :int \

(O[To/x])[TZ/x]F F,, +int

(OLTo/XDIT/YIF x & T,

‘e

.,

......
.........
. . g .
. . .
......
........
.................
..............................
. s
..........................

HA43

Example of Typing “let”

AST OF letx:T,in
Type env. \ \
Types O[T/X1F + int

I

O[Ty/x]F lety: T, inl tint O[T,/x]rletx:T,in, ‘int

(OlTo/xDIT/ylF E,, :int \

(O[To/x])[TZ/x]F F,, +int

(OLTo/XDIT/YIF x & T,

‘e

.,

......
.........
. . g .
. . .
......
........
.................
..............................
. s
..........................

#44

Example of Typing “let”

_':_ST OF letx:T,in, :int
ype env. \
Types \‘ \

O[T,/x]F + int

I

O[Ty/x]F lety: T, inl tint O[T,/x]rletx:T,in, ‘int

(OlTo/xDIT/ylF E,, :int \

(O[To/x])[TZ/x]F F,, +int

(OLTo/XDIT/YIF x & T,

‘e

.,

......
.........
. . g .
. . .
......
........
.................
..............................
. s
..........................

#H45

Notes

* The type environment gives types to the free
identifiers in the current scope

 The type environment is passed down the
AST from the root towards the leaves

* Types are computed up the AST from the
leaves towards the root

#46

Q: Movies (362 / 842)

 In this 1992 comedy Dana Carvey
and Mike Myers reprise a
Saturday Night Live skit, sing
Bohemian Rhapsody and say of
a guitar: "Oh ves, it will be
mine."

Q: General (455 / 842)

e This numerical technique for finding
solutions to boundary-value problems
was initially developed for use in
structural analysis in the 1940's. The
subject is represented by a model
consisting of a number of linked
simplified representations of discrete
regions. It is often used to determine
stress and displacement in mechanical
systems.

Q: Movies (377 / 842)

 |[dentify the subject or the speaker in 2
of the following 3 Star Wars quotes.

- "Aren't you a little short to be a
stormtrooper?”

- | felt a great disturbance in the Force ...
as if millions of voices suddenly cried out in
terror and were suddenly silenced.”

- "l recognized your foul stench when | was
brought on board.”

Let with Initialization

Now consider let with initialization:

OF e, : T,

O[TO/X] - e, . T1 [LCT-IHIT]
OF letx: T,«<¢e,ine, : T,

This rule is weak. Why?

#50

Let with Initialization

e Consider the example:

class C inherits P { ... }
letx: P+ newCin ...

e The previous let rule does not allow this code
- We say that the rule is too weak or incomplete

#51

Subtyping

 Define a relation X < Y on classes to say
that:

- An object of type X could be used when one of
type Y is acceptable, or equivalently

- X conforms with Y
- |In Cool this means that X is a subclass of Y

 Define a relation < on classes
X< X
X < Y if X inherits from Y
X<ZifX<YandY<Z

#52

Let With Initialization (Better)

OFe,: T
T<LST,

O[T,/x]+ e, : T [Let-Init]

OFletx: T, e,ine, : T,
e Both rules for let are sound

e But more programs type check with this
new rule (it is more complete)

#53

Type System Tug-of-War

e There is a tension between
- Flexible rules that do not constrain programming

- Restrictive rules that ensure safety of execution

#54

Expressiveness
of Static Type Systems

o A static type system enables a compiler to
detect many common programming errors

* The cost is that some correct programs are
disallowed
- Some argue for dynamic type checking instead

- Others argue for more expressive static type
checking

e But more expressive type systems are also
more complex

#55

Dynamic And Static Types

 The dynamic type of an object is the class C
that is used in the “new C” expression that
creates the object

- A run-time notion
- Even languages that are not statically typed have
the notion of dynamic type
e The static type of an expression is a notation
that captures all possible dynamic types the
expression could take

- A compile-time notion
#56

Dynamic and Static Types. (Cont.)

 In early type systems the set of static types
correspond directly with the dynamic types

e Soundness theorem: for all ex

Dressions E

dynamic_type(E) = static_type(E)
(in all executions, E evaluates to values of the

type inferred by the compiler)

e This gets more complicated in advanced type

systems (e.g., Java, Cool)

#57

Dynamic and Static Types in COOL

C
C
C
X has static
type A

assA{ ..}
ass B inherits A {...}

ass Main { Here, x’s value has

/’ AX « new A; — dynamic type A

X « new B; <« Here, x’s value has
dynamic type B

e A variable of static type A can hold values of

static type B,

if B<A

#58

Dynamic and Static Types

Soundness theorem for the Cool type system:
O E. dynamic_type(E) < static_type(E)

Why is this Ok?
- For E, compiler uses static_type(E)

- All operations that can be used on an object of type
C can also be used on an object of type C’ < C
e Such as fetching the value of an attribute
e Or invoking a method on the object

- Subclasses can only add attributes or methods
- Methods can be redefined but with the same types!

#59

Subtyping Example

e Consider the following Cool class definitions

ClassA{a():int{0};}
Class B inherits A{b() : int{1};}

 An instance of B has methods “a” and “b”

e An instance of A has method “a”

- A type error occurs if we try to invoke method
“b” on an instance of A

#60

Example of Wrong Let Rule (1)

* Now consider a hypothetical wrong let rule:
OFe,: T T<T, Ole T,
OFletx: Ty« e,ine, : T,

e How is it different from the correct rule?

fjr;;:'II:O‘j‘ "‘*#\:}

The gaod elephant in
airship dropped what things?

#61

Example of Wrong Let Rule (1)

* Now consider a hypothetical wrong let rule:

OFe,: T T<T, Ole T,
OFletx: Ty« e,ine, : T,

e How is it different from the correct rule?

» The following good program does not typecheck
let x : Int +— Oinx + 1
+ Why?

#62

Example of Wrong Let Rule (2)

* Now consider a hypothetical wrong let rule:
OFe,: T T, <T O[T/X]Fe, :T,
OFletx: Ty« e,ine, : T,

e How is it different from the correct rule?

H#63

Example of Wrong Let Rule (2)

* Now consider a hypothetical wrong let rule:
OFe,: T T, <T O[T/X]Fe, :T,
OFletx: Ty« e,ine, : T,

e How is it different from the correct rule?

» The following bad program is well typed
let x : B «+— new A in x.b()
* Why is this program bad?

#64

Example of Wrong Let Rule (3)

* Now consider a hypothetical wrong let rule:
OFe,: T TLST, O[T/X]Fe, :T,
OFletx: Ty« e,ine, : T,

e How is it different from the correct rule?

#65

Example of Wrong Let Rule (3)

* Now consider a hypothetical wrong let rule:
OFe,: T TLST, O[T/X]Fe, :T,
OFletx: Ty« e,ine, : T,

e How is it different from the correct rule?

» The following good program is not well typed
let x : A+ new B in{. x + new A; x.a(); }
* Why is this program not well typed?

#66

Typing Rule Notation

The typing rules use very concise notation
They are very carefully constructed

Virtually any change in a rule either:

- Makes the type system unsound
(bad programs are accepted as well typed)

- Or, makes the type system less usable (incomplete)
(good programs are rejected)

But some good programs will be rejected anyway
- The notion of a good program is undecidable

H#67

Assignment

More uses of subtyping:

O(id) =T,
OFe, : T,
T, < T, [Assign]
OFid<+ e : T,

#68

Initialized Attributes

e Let O.(x) = T for all attributes x:T in class C

- O, represents the class-wide scope

o Attribute initialization is similar to let, except
for the scope of nhames

O.(id) =T,
O e T,
T, <T,
O Fid: T,+ e, ;

[ATtr-Init]

#69

If-Then-Else

e Consider:
if e, then e, else e, fi

e The result can be either e, or e,
« The dynamic type is either e,’s or e,’s type

 The best we can do statically is the smallest
supertype larger than the type of e, and e,

#70

If-Then-Else example

e Consider the class hierarchy
P
/N
A B

e ... and the expression
if ... then new A else new B fi

o Its type should allow for the dynamic type to
be both A or B

- Smallest supertype is P

H#71

Least Upper Bounds

e Define: lub(X,Y) to be the least upper bound
of Xand Y. lub(X,Y) is Z if
-X<IANYLLZ
Z is an upper bound
- X<Z2ANYLZ0OZIL7

L is least among upper bounds

* In Cool, the least upper bound of two types is
their least common ancestor in the
inheritance tree

H#H72

If-Then-Else Revisited

O e,: Bool
OF e, : T,
OFe,:T,

O I- if e, then e, else e, fi : lub(T,, T,)
[If-Then-Else]

H#H73

Case

* The rule for case expressions takes a lub over
all branches

OFe,: T,
O[T,/x,]Fe,: T, [Case]

O[T/x]Fe, :T'

Ol case e, of x,: T, = e,;
;X T = e;esac: lub(T,’,...,T.)

H#74

Next Time (Post-Midterm)

» Type checking method dispatch

#75

Homework

 Today: WA3 due

 Wednesday: PA3 due
- Parsing!

 Thursday Feb 28 - Midterm 1 in Class
- 2:05 - 3:15

- One page of notes (front and back) hand-written
by you

o Before Next Tuesday: Read Chapter 7.2

H#76

