
#1

Type Type
CheckingChecking

#2

Passing Out Review Forms

#3

One-Slide Summary

• A type environment gives types for free
variables. You typecheck a let-body with an
environment that has been updated to
contain the new let-variable.

• If an object of type X could be used when one
of type Y is acceptable then we say X is a
subtype of Y, also written X · Y.

• A type system is sound if ∀ E.
dynamic_type(E) · static_type(E)

#4

Lecture Outline

• Typing Rules

• Typing Environments

• “Let” Rules

• Subtyping

• Wrong Rules

#5

Example: 1 + 2

` 1 : Int
` 1 + 2 : Int

` 2 : Int

#6

 Soundness

• A type system is sound if
– Whenever ` e : T
– Then e evaluates to a value

of type T

• We only want sound rules
– But some sound rules are

better than others:

` i : Object

(i is an integer)

If we can
prove it, then

it's true!

#7

Type Checking Proofs

• Type checking proves facts e : T
– One type rule is used for each kind of expression

• In the type rule used for a node e
– The hypotheses are the proofs of types of e’s

subexpressions
– The conclusion is the proof of type of e itself

#8

Rules for Constants

` false : Bool
[Bool]

` s : String
[String]

(s is a string
constant)

#9

Rule for New

new T produces an object of type T
– Ignore SELF_TYPE for now . . .

` new T : T
[New]

#10

Two More Rules

` not e : Bool
` e : Bool [Not]

` while e1 loop e2 pool : Object

` e1 : Bool

` e2 : T [Loop]

#11

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

#12

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

#13

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false : Bool

#14

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

: Bool

: Bool

#15

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1: Bool

: Bool

#16

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1: Bool

: Bool

: Int

#17

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2

: Bool

: Bool

: Int

#18

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2

: Bool

: Bool

: Int

: Int

#19

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int

#20

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int : Int

#21

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int : Int

: Int

#22

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int : Int

: Int

: Int

#23

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int : Int

: Int

: Int

: Object

#24

Typing Derivations

• The typing reasoning can be expressed as a
tree:

` 2 * 3 : Int

` 2 : Int ` 3 : Int

` not false : Bool

` false : Bool ` 1 : Int

` while not false loop 1 + 2 * 3 : Object

` 1 + 2 * 3: Int

• The root of the tree is the whole
expression

• Each node is an instance of a typing rule
• Leaves are the rules with no hypotheses

#25

A Problem

• What is the type of a variable reference?

• The local structural rule does not carry
enough information to give x a type. Fail.

` x : ?
[Var] (x is an

identifier)

#26

A Solution: Put more
information in the rules!

• A type environment gives types for free
variables
– A type environment is a mapping from

Object_Identifiers to Types
– A variable is free in an expression if:

• The expression contains an occurrence of the variable
that refers to a declaration outside the expression

– in the expression “x”, the variable “x” is free
– in “let x : Int in x + y” only “y” is free
– in “x + let x : Int in x + y” both “x”, “y” are free

#27

Type Environments

Let O be a function from Object_Identifiers to
Types

The sentence O ` e : T

is read: Under the assumption that variables
have the types given by O, it is provable that
the expression e has the type T

#28

Modified Rules

The type environment is added to the earlier
rules:

O ` i : Int
[Int]

O ` e1 + e2 : Int

O ` e1 : Int

 O ` e2 : Int [Add]

(i is an integer)

#29

New Rules

And we can write new rules:

Equivalently:

O ` x : T
[Var] (O(x) = T)

O ` x : T
O(x) = T [Var]

#30

Let

O[T0/x] means “O modified to map x to T0 and
behaving as O on all other arguments”:
 O[T0/x] (x) = T0

 O[T0/x] (y) = O(y)

(You can write O[x/T0] on tests/assignments.)

O ` let x : T0 in e1 : T1

O[T0/x] ` e1 : T1 [Let-No-Init]

#31

Let Example

• Consider the Cool expression
let x : T0 in (let y : T1 in Ex, y) + (let x : T2 in Fx, y)

 (where Ex, y and Fx, y are some Cool expression that
contain occurrences of “x” and “y”)

• Scope
– of “y” is Ex, y

– of outer “x” is Ex, y

– of inner “x” is Fx, y

• This is captured precisely in the typing rule.

#32

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

x

AST

#33

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

AST
Type env.

#34

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

AST
Type env.

#35

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

AST
Type env.

O[T0/x] ` O[T0/x] `

#36

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

AST
Type env.

O[T0/x] ` O[T0/x] `

#37

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

AST
Type env.

O[T0/x] ` O[T0/x] `

#38

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

AST
Type env.

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#39

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

AST
Type env.
Types

: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#40

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

AST
Type env.
Types

: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#41

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

: int

AST
Type env.
Types

: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#42

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

: int

AST
Type env.
Types

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#43

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

: int

AST
Type env.
Types

: int

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#44

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

: int

AST
Type env.
Types

: int

: int

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#45

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

: int

AST
Type env.
Types

: int

: int

: int

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#46

Notes

• The type environment gives types to the free
identifiers in the current scope

• The type environment is passed down the
AST from the root towards the leaves

• Types are computed up the AST from the
leaves towards the root

Q: Movies (362 / 842)

•In this 1992 comedy Dana Carvey
and Mike Myers reprise a
Saturday Night Live skit, sing
Bohemian Rhapsody and say of
a guitar: "Oh yes, it will be
mine."

Q: General (455 / 842)
• This numerical technique for finding

solutions to boundary-value problems
was initially developed for use in
structural analysis in the 1940's. The
subject is represented by a model
consisting of a number of linked
simplified representations of discrete
regions. It is often used to determine
stress and displacement in mechanical
systems.

Q: Movies (377 / 842)

• Identify the subject or the speaker in 2
of the following 3 Star Wars quotes.
– "Aren't you a little short to be a

stormtrooper?"
– "I felt a great disturbance in the Force ...

as if millions of voices suddenly cried out in
terror and were suddenly silenced."

– "I recognized your foul stench when I was
brought on board."

#50

Let with Initialization

Now consider let with initialization:

This rule is weak. Why?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T0

O[T0/x] ` e1 : T1 [Let-Init]

#51

Let with Initialization

• Consider the example:

 class C inherits P { … }
 …
 let x : P Ã new C in …
 …
• The previous let rule does not allow this code

– We say that the rule is too weak or incomplete

#52

Subtyping

• Define a relation X · Y on classes to say
that:
– An object of type X could be used when one of

type Y is acceptable, or equivalently
– X conforms with Y
– In Cool this means that X is a subclass of Y

• Define a relation · on classes
 X · X

 X · Y if X inherits from Y
 X · Z if X · Y and Y · Z

#53

Let With Initialization (Better)

• Both rules for let are sound
• But more programs type check with this

new rule (it is more complete)

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T

T · T0

O[T0/x] ` e1 : T1
[Let-Init]

#54

Type System Tug-of-War

• There is a tension between
– Flexible rules that do not constrain programming

– Restrictive rules that ensure safety of execution

#55

Expressiveness
of Static Type Systems

• A static type system enables a compiler to
detect many common programming errors

• The cost is that some correct programs are
disallowed
– Some argue for dynamic type checking instead
– Others argue for more expressive static type

checking

• But more expressive type systems are also
more complex

#56

Dynamic And Static Types

• The dynamic type of an object is the class C
that is used in the “new C” expression that
creates the object
– A run-time notion
– Even languages that are not statically typed have

the notion of dynamic type

• The static type of an expression is a notation
that captures all possible dynamic types the
expression could take
– A compile-time notion

#57

Dynamic and Static Types. (Cont.)

• In early type systems the set of static types
correspond directly with the dynamic types

• Soundness theorem: for all expressions E
 dynamic_type(E) = static_type(E)
 (in all executions, E evaluates to values of the

type inferred by the compiler)

• This gets more complicated in advanced type
systems (e.g., Java, Cool)

#58

Dynamic and Static Types in COOL

• A variable of static type A can hold values of
static type B, if B · A

class A { … }
class B inherits A {…}
class Main {
 A x ← new A;
 …
 x ← new B;
 …
}

x has static
type A

Here, x’s value has
dynamic type A

Here, x’s value has
dynamic type B

#59

Dynamic and Static Types

Soundness theorem for the Cool type system:
∀ E. dynamic_type(E) · static_type(E)

Why is this Ok?
– For E, compiler uses static_type(E)
– All operations that can be used on an object of type

C can also be used on an object of type C’ · C
• Such as fetching the value of an attribute
• Or invoking a method on the object

– Subclasses can only add attributes or methods
– Methods can be redefined but with the same types!

#60

Subtyping Example

• Consider the following Cool class definitions

 Class A { a() : int { 0 }; }
 Class B inherits A { b() : int { 1 }; }

• An instance of B has methods “a” and “b”
• An instance of A has method “a”

– A type error occurs if we try to invoke method
“b” on an instance of A

#61

Example of Wrong Let Rule (1)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T · T0 O ` e1 : T1

#62

Example of Wrong Let Rule (1)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T · T0 O ` e1 : T1

• The following good program does not typecheck
let x : Int Ã 0 in x + 1

• Why?

#63

Example of Wrong Let Rule (2)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T0 · T O[T0/x] ` e1 : T1

#64

Example of Wrong Let Rule (2)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T0 · T O[T0/x] ` e1 : T1

• The following bad program is well typed
 let x : B Ã new A in x.b()
• Why is this program bad?

#65

Example of Wrong Let Rule (3)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T · T0 O[T/x] ` e1 : T1

#66

Example of Wrong Let Rule (3)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T · T0 O[T/x] ` e1 : T1

• The following good program is not well typed
let x : A Ã new B in {… x Ã new A; x.a(); }

• Why is this program not well typed?

#67

Typing Rule Notation

• The typing rules use very concise notation
• They are very carefully constructed
• Virtually any change in a rule either:

– Makes the type system unsound
(bad programs are accepted as well typed)

– Or, makes the type system less usable (incomplete)
(good programs are rejected)

• But some good programs will be rejected anyway
– The notion of a good program is undecidable

#68

Assignment

More uses of subtyping:

[Assign]

O ` id Ã e1 : T1

O(id) = T0

O ` e1 : T1

T1 · T0

#69

Initialized Attributes

• Let OC(x) = T for all attributes x:T in class C

– OC represents the class-wide scope

• Attribute initialization is similar to let, except
for the scope of names

[Attr-Init]
OC ` id : T0 Ã e1 ;

OC(id) = T0

OC ` e1 : T1

T1 · T0

#70

If-Then-Else

• Consider:
if e0 then e1 else e2 fi

• The result can be either e1 or e2

• The dynamic type is either e1’s or e2’s type

• The best we can do statically is the smallest
supertype larger than the type of e1 and e2

#71

If-Then-Else example

• Consider the class hierarchy

• … and the expression
if … then new A else new B fi

• Its type should allow for the dynamic type to
be both A or B
– Smallest supertype is P

P

A B

#72

Least Upper Bounds

• Define: lub(X,Y) to be the least upper bound
of X and Y. lub(X,Y) is Z if
– X · Z Æ Y · Z

Z is an upper bound

– X · Z’ Æ Y · Z’ ⇒ Z · Z’
Z is least among upper bounds

• In Cool, the least upper bound of two types is
their least common ancestor in the
inheritance tree

#73

If-Then-Else Revisited

[If-Then-Else]

O ` if e0 then e1 else e2 fi : lub(T1, T2)

O ` e0 : Bool

O ` e1 : T1

O ` e2 : T2

#74

Case

• The rule for case expressions takes a lub over
all branches

[Case]

O ` case e0 of x1:T1) e1;

 …; xn : Tn) en; esac : lub(T1’,…,Tn’)

O ` e0 : T0

O[T1/x1] ` e1 : T1’

…

O[Tn/xn] ` en : Tn’

#75

Next Time (Post-Midterm)

• Type checking method dispatch

• Type checking with SELF_TYPE in COOL

#76

Homework
• Today: WA3 due
• Wednesday: PA3 due

– Parsing!

• Thursday Feb 28 – Midterm 1 in Class
– 2:05 - 3:15
– One page of notes (front and back) hand-written

by you

• Before Next Tuesday: Read Chapter 7.2

