
#1

ScopingScoping
andand

Type Type 
CheckingChecking



#2

First, WA2

• Pick it up! Even if you got a passing grade 
you’ll want to see what we marked up. 

• The midterm is not pass/fail.
• Derivations and parse trees are closely 

related, but if we ask you to draw a parse 
tree you must draw the parse tree.

• WA2#4 was in the book (Fig 2.34; you just had 
to substitute in k=3): 
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Second, 
PA2

Avg = 46.1

Avg = 41.6

# of Testcases

# of Students

Raw PA2 Testcase Performance (out of 51)

# of Students

Final PA2 Grade (out of 50)

PA2 Overall Student Performance
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PA2 Problems

• -5: completely bizarre and partially incorrect 
error messages (2x)

• -5: outputting partially lexed file on error (3x)
• -5: outputting to STDOUT (2x)
• -10: Claire having to fix code to get it to 

compile

• Don't do these things on PA3, PA4 or PA5!
– We only become harsher as time goes by.
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Next. Midterm Fever: Catch it!
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Administration
• Midterm 1

– Thursday, February 28, in class
– Be here on time (we start at 2:05, end at 3:15)
– Everything up to parsing, no semantic analysis
– We will vote (right now) for one of these: 

• Open note, open book
• 1 cheat sheet, (two sides: front and back), written or printed

– In any event, no electronic devices or computers
• Midterm review session

– You have until midnight Friday to list preferences in the 
midterm review session thread. Currently we won’t be 
having one. Hint: sign up right after class. 
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In One Slide

• Scoping rules match identifier uses with 
identifier definitions.

• A type is a set of values coupled with a 
set of operations on those values. 

• A type system specifies which operations 
are valid for which types. 

• Type checking can be done statically (at 
compile time) or dynamically (at run 
time). 
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Lecture Outline

• The role of semantic analysis in a compiler
– A laundry list of tasks

• Scope
• Types
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The Compiler/Interpreter So Far

• Lexical analysis
– Detects inputs with illegal tokens

• Parsing
– Detects inputs with ill-formed parse trees

• Semantic analysis
– Last “front end” phase
– Catches more errors
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What’s Wrong?

• Example 1

let y: Int in x + 3

• Example 2

let y: String Ã 
“abc” in y + 3
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Why a Separate Semantic 
Analysis?

• Parsing cannot catch some errors

• Some language constructs are not context-
free
– Example: All used variables must have been 

declared (i.e. scoping)
– Example: A method must be invoked with 

arguments of proper type (i.e. typing)
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What Does Semantic Analysis Do?

• Many kinds of checks . . . cool checks:
1. All identifiers are declared
2. Static Types
3. Inheritance relationships
4. Classes defined only once
5. Methods in a class defined only once
6. Reserved identifiers are not misused
And others . . .

• The requirements depend on the language
– Which of these are checked by Ruby? Python?
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Scope

• Scoping rules match identifier uses with 
identifier declarations
– Important semantic analysis step in most 

languages
– Including COOL!
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Scope (Cont.)

• The scope of an identifier is the portion of a 
program in which that identifier is accessible

• The same identifier may refer to different 
things in different parts of the program
– Different scopes for same name don’t overlap

• An identifier may have restricted scope
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Static vs. Dynamic Scope

• Most languages have static scope
– Scope depends only on the program text, not run-

time behavior
– Cool has static scope

• A few languages are dynamically scoped
– Lisp, SNOBOL, Tex
– Lisp has changed to mostly static scoping
– Scope depends on execution of the program
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Static Scoping Example

let x: Int <- 0 in
{

x;
{ let x: Int <- 1 in

x; } ; 
x;

}
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Static Scoping Example (Cont.)

let x: Int <- 0 in
{

x;
{ let x: Int <- 1 in

x; } ; 
x;

}
Uses of x refer to closest enclosing definition
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Scope in Cool

• Cool identifier bindings are introduced by
– Class declarations (introduce class names)
– Method definitions (introduce method names)
– Let expressions (introduce object id’s)
– Formal parameters (introduce object id’s)
– Attribute definitions in a class (introduce object 

id’s)
– Case expressions (introduce object id’s)
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Implementing the Implementing the 
Most-Closely Nested RuleMost-Closely Nested Rule

• Much of semantic analysis can be expressed as Much of semantic analysis can be expressed as 
a a recursive descentrecursive descent of an AST of an AST
– Process an AST node Process an AST node nn
– Process the children of Process the children of nn
– Finish processing the AST node Finish processing the AST node nn
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Implementing . . . (Cont.)

• Example: the scope of let bindings is one 
subtree

          let x: Int Ã 0 in e

• x can be used in subtree e
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Symbol Tables
• Consider again: let x: Int Ã 0 in e

• Idea:
– Before processing e, add definition of x to current 

definitions, overriding any other definition of x
– After processing e, remove definition of x and restore old 

definition of x

• A symbol table is a data structure that tracks the 
current bindings of identifiers 
– You’ll need to make one for PA4
– OCaml’s Hashtbl is designed to be a symbol table, so if 

you saved OCaml … no, wait … 
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Scope in Cool (Cont.)

• Not all kinds of identifiers follow the most-
closely nested rule

• For example, class definitions in Cool
– Cannot be nested
– Are globally visible throughout the program

• In other words, a class name can be used 
before it is defined
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Example: Use Before Definition

Class Foo {
. . . let y: Test in . . .

};

Class Test {
. . . 

};
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More Scope in Cool

Attribute names are global within the class in 
which they are defined

Class Foo {
f(): Int { tm };
tm: Int Ã 0;

}
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More Scope (Cont.)

• Method and attribute names have complex 
rules

• A method need not be defined in the class in 
which it is used, but in some parent class
– This is standard inheritance!

• Methods may also be redefined (overridden)
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Class Definitions
• Class names can be used before being defined
• We can’t check this property

– using a symbol table
– or even in one pass :-(

• Solution
– Pass 1: Collect all class names
– Pass 2: Do the checking
– ? 
– Pass 4: Profit!

• Semantic analysis requires multiple passes
– Probably more than two



Q:  Music  (210 / 842) 

•Give the eight-word title of the 
1960 Brian Hyland #1 hit 
describing a very small colored-
and-patterned two-piece 
bathing suit "that she wore for 
the first time today".



Q:  Advertising  (832 / 842) 

• Translate the last line in this French 
M&Ms jingle: Nous sommes les 
M&Ms / Nous sommes les M&Ms / 
Des belles coleurs en choix / Des 
belles coleurs en choix / Tout le 
monde nous aime / C'est nous, les 
M&Ms / M&Ms fondent dans la 
bouche, pas dans la main.  



Q:  Games  (575 / 842) 

•This line of female dolls with 
fruit-dessert names was initially 
introduced in 1980 and included 
sidekicks Blueberry Muffin and 
Crepe Suzette to help fight 
against Sour Grapes.  
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Types

• What is a type?
– The notion varies from language to language

• Consensus
– A set of values
– A set of operations on those values

• Classes are one instantiation of the modern 
notion of type
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Why Do We Need Type Systems?

Consider the assembly language fragment

addi  $r1, $r2, $r3

What are the types of $r1, $r2, $r3?
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Types and Operations

• Certain operations are legal or valid for 
values of each type

– It doesn’t make sense to add a function pointer 
and an integer in C

– It does make sense to add two integers

– But both have the same assembly language 
implementation!
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Type Systems

• A language’s type system specifies which 
operations are valid for which types

• The goal of type checking is to ensure that 
operations are used with the correct types
– Enforces intended interpretation of values, 

because nothing else will!
• Our last, best hope … for victory!

• Type systems provide a concise formalization 
of the semantic checking rules
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What Can Types do For Us?

• Can detect certain kinds of errors
• Memory errors:

– Reading from an invalid pointer, etc.
• Violation of abstraction boundaries:

class FileSystem {
   open(x : String) : File {
        …
    }
…
}

class Client {
   f(fs : FileSystem) { 
       File fdesc <- fs.open(“foo”)
       …
   } -- f cannot see inside fdesc !
} 
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Type Checking Overview

• Three kinds of languages:
– Statically typed: All or almost all checking of 

types is done as part of compilation (C, Java, 
Cool)

– Dynamically typed: Almost all checking of types 
is done as part of program execution (Scheme, 
Ruby, Python, …)

– Untyped: No type checking (machine code)
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The Type Wars
• Competing views on static vs. dynamic typing
• Static typing proponents say:

– Static checking catches many programming errors 
at compile time

– Avoids overhead of runtime type checks

• Dynamic typing proponents say:
– Static type systems are restrictive
– Rapid prototyping easier in a dynamic type system
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The Type Wars (Cont.)

• In practice, most code is 
written in statically typed 
languages with an “escape” 
mechanism
– Unsafe casts in C, native 

methods in Java, unsafe 
modules in Modula-3

• Dynamic typing (sometimes 
called “duck typing”) is big in 
the scripting / glue world
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Cool Types

• The types are:
– Class names
– SELF_TYPE

• There are no unboxed base types (int in Java)

• The user declares types for all identifiers

• The compiler infers types for expressions
– Infers a type for every expression
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Type Checking and Type Inference

• Type Checking is the process of verifying 
fully typed programs

• Type Inference is the process of filling in 
missing type information

• The two are different, but are often used 
interchangeably
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Rules of Inference

• We have seen two examples of formal 
notation specifying parts of a compiler
– Regular expressions (for the lexer)
– Context-free grammars (for the parser)

• The appropriate formalism for type checking 
is logical rules of inference
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Why Rules of Inference?

• Inference rules have the form
If Hypothesis is true, then Conclusion is true

• Type checking computes via reasoning
If E1 and E2 have certain types, 

then E3 has a certain type

• Rules of inference are a compact notation 
for “If-Then” statements
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From English to an Inference Rule

• The notation is easy to read (with practice)

• Start with a simplified system and gradually 
add features

• Building blocks
– Symbol Æ is “and”

– Symbol ⇒ is “if-then”

– x:T is “x has type T”
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English to Inference Rules (2)

If e1 has type Int and e2 has type Int,           
then e1 + e2 has type Int

(e1 has type Int Æ e2 has type Int)  ⇒               
e1 + e2 has type Int

(e1: Int Æ e2: Int)  ⇒  e1 + e2: Int
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English to Inference Rules (3)

The statement 

(e1: Int Æ e2: Int)  ⇒  e1 + e2: Int

is a special case of 

( Hypothesis1 Æ . . . Æ Hypothesisn ) ⇒ 
Conclusion

This is an inference rule
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Notation for Inference Rules

• By tradition inference rules are written

• Cool type rules have hypotheses and 
conclusions of the form:

                           ` e : T
• ` means “we can prove that . . .”

` Conclusion

` Hypothesis1   …    ` Hypothesisn
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Two Rules

` i : Int
[Int]

` e1 + e2 : Int

` e1 : Int

` e2 : Int
[Add]

(i is an integer)
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Two Rules (Cont.)

• These rules give templates describing how to 
type integers and + expressions

• By filling in the templates, we can produce 
complete typings for expressions

• We can fill the template with ANY expression!

` true + false : Int
` true : Int             ` false : Int
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Example: 1 + 2

` 1 : Int
` 1 + 2 : Int

` 2 : Int
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Homework
• Tuesday: Reading!
• Tuesday: WA3 due
• Wednesday February 27: PA3 due

– Parsing!

• Thursday Feb 28 – Midterm 1 in Class


