Intro To Parsing

Step By Step

Reading Quiz Answers

e Are practical parsers and scanners based on deterministic or
non-deterministic automata?

- Deterministic
- Half credit: “they are equivalent” w/o “convert to DFA”

 How can regular expressions be used to specify nested
constructs?

- They cannot. (Scott Book 2.1.2, second sentence)
- Nested parentheses (")" are the canonical example.

e How is a two-dimensional transition table used in table-
driven scanning?

- new_state = table[old_state][new_character]

#2

New Reading Quiz

 What does “recursive descent” mean?
« Name a “truth that might hurt”.
« Name a “peril of JavaSchools”.

1 LIKE TO
YERE WORDS,

WHAT »

I TAKE NOUNS AND
ADJECTINES AND WUSE THEM
AS VERRS. REMEMRER
WHEN "ACCESS WAS A THING?
NOw 1TS SOMETHING You Do. |
IT GOT NERBED. |

MAYBE WE CAN ENENMTUALLY MAKE
LAMGUAGE A COMPLETE IMPEDIMENT

VERBING 'WEIRDS
LANGUAGE

TO UNDERSTAMDING.

Cunning Plan

e Formal Languages
- Regular Languages Revisited

e Parser Overview

e Context-Free Grammars (CFGs)
e Derivations

o Ambiguity

#4

One-Slide Summary

e A parser takes a sequence of tokens as
input. If the input is valid, it produces
a parse tree (or derivation).

e Context-free grammars are a notation
for specifying formal languages. They
contain terminals, non-terminals and
productions (aka rewrite rules).

#5

Languages and Automata

e Formal languages are very important in CS
- Especially in programming languages

e Regular languages
- The weakest formal languages widely used
- Many applications

o We will also study context-free languages
- A “stronger” type of formal language

#6

Limitations of Regular Languages

e Intuition: A finite automaton that runs long
enough must repeat states

- Pigeonhole Principle: imagine 20 states and 300
input characters

e A finite automaton can’t remember how
often it has visited a particular state
- Only enough to store in which state it is in
- Cannot count, except up to a finite limit

e Language of balanced parentheses is not
regular: { () | i > 0}

#7

The Functionality of the Parser

e Input: sequence of tokens from lexer
- e.g., the .cl-lex files you make in PA2

o Output: parse tree of the program
- Also called an abstract syntax tree

e Output: error if the input is not valid
- e.g., “parse error on line 3”

#8

Example

e Cool program text
If X =y then 1 else 2 fi

e Parser input (tokens)
IF ID = ID THEN INT ELSE INT FI

e Parser output (tree)

IF-THEN-ELSE
=/MT
P INT

1D 1D

#9

Comparison: Lexical Analysis

Phase

Input

Output

Lexer

Sequence of characters

Sequence of tokens

Parser

Sequence of tokens

Parse tree

Weather: Five Day Forecast

Plan your week with this forecast from the Jersey Meteorological Department.

See also: » Today's Weather « UY Index

Day Summary Max. temp

Wind Wind speed UV index

‘ W IH:E

SgW 84285 mph E

o d

SW 35 mph

INDEX

E

#10

The Role of the Parser

e Not all sequences of tokens are programs
- then x * / + 3 while x ; y z then

e The parser must distinguish between valid
and invalid sequences of tokens

e We need
- A language to describe valid sequences of tokens

- A method (an algorithm) for distinguishing valid
from invalid sequences of tokens

#11

Programming Language Structure

e Programming languages have recursive structure
o Consider the language of arithmetic expressions
with integers, +, *, and ()
e An expression is either:
- an integer

- an expression followed by “+” followed by
expression

- an expression followed by “*” followed by
expression

- a ‘(‘ followed by an expression followed by)’

e int , Int+1int , (1int+1int) " int are expressions
#12

Notation for

Programming Languages
e An alternative notation:
E — int
E—-E+E
E—-E*E
E— (E)
e« We can view these rules as rewrite rules

- We start with E and replace occurrences of E
with some right-hand side

-E—-E*E—-(E)*"E—-(E+E)*E
— ... = (Int +int) * int

#13

Observation

 All arithmetic expressions can be obtained by
a sequence of replacements

e Any sequence of replacements forms a valid
arithmetic expression

e This means that we cannot obtain

(int))

by any sequence of replacements. Why?

e This notation is a context-free grammar

#14

Context Free Grammars

e A context-free grammar consists of

- A set of non-terminals N
e Written in uppercase in these notes

- A set of terminals T
e Lowercase or punctuation in these notes

- A start symbol S (a non-terminal)
- A set of productions (rewrite rules)
e Assuming E € N

E— ¢ , or
E—-Y, Y, ... Y where Y. CNUT

#15

Examples of CFGs

Simple arithmetic expressions:
E — int
E—->E+E
E—-E*E
E— (E)
- One non-terminal: E

- Several terminals: int + * ()
 Called terminals because they are never replaced

- By convention the non-terminal for the first
production is the start symbol

#16

The Language of a CFG

Read productions as replacement rules:
X=>Y, ...Y

Means X can be replaced by Y, ... Y,

n

X — €

Means X can be erased or eaten
(replaced with empty string)

Key |ldea

To construct a valid sequence of terminals:

* Begin with a string consisting of the start
symbol “S”

* Replace any non-terminal X in the string by
a right-hand side of some production

XY, .Y

* Continue replacing until there are only
terminals in the string

#18

The Language of a CFG: —

More formally, write

X, o X X X X

_)
X, o X Y, Yo Xy o X

n

if there is a production
X =Y .Y

#19

The Language of a CFG: —°

Write
X, oo X =7 Y, .. Y

n m

if
Xiwo X = o> o= Y, LY

m

in O or more steps.
x|

'j You've been warned 3 times that this file does not exist,

! Mow you've made us cakch this worthless exception and we're upset,
Do niok dio Ehis again,

| 8] 4 I

The Language of a CFG

Let G be a context-free grammar with start
symbol S. Then the language of G is:

L(G)={a,..a | S—"a,..a and
every a, is a terminal }

L(G) is a set of strings over the alphabet of
terminals.

#21

CFG Language Examples

e S—» 0 alsowrittenasS— 0 | 1
S - 1
Generates the language { “0”, “1” }
« What about S— 1A
A—>0]| 1
« What about S— 1A
A—-O0]| 1A

e Whatabout S—¢€ | (S)

#22

Arithmetic Example

Simple arithmetic expressions:

E - E+E |E

Some elements of the

id
(1d)
(1d)

id

(E) | id
language:

id + id LD

id Oid E:';if

id O (id)

$- 4554‘;211 o _

Cool Example

A fragment of COOL.:

EXPR - 1f EXPR then EXPR else EXPR fi
while EXPR loop EXPR pool
1d

#24

Cool Example (Cont.)

Some elements of the language

1d

1f 1d then 1d else 1d 1

while 1d loop 1d pool

1f while 1d loop 1d pool then 1d else 1d
1f 1f 1d then 1d else 1d f1 then 1d else 1d 11

#25

Notes

The idea of a CFG is a big step. But:

« Membership in a language is “yes” or “no”
- we also need parse tree of the input

« We must handle errors gracefully

 Need an implementation of CFGs
- bison, yacc, ocamlyacc, ply, etc.

#26

More Notes

e Form of the grammar is important

- Many grammars generate the same language
e Give me an example.
- Automatic tools are sensitive to the grammar

- Note: Tools for regular languages (e.g., flex)
are also sensitive to the form of the regular

expression, but this is rarely a problem in
practice

#27

Derivations and Parse Trees

A derivation is a sequence of productions
S— .. — ...

A derivation can be drawn as a tree
- Start symbol is the tree’s root

- For a production X — Y, ... Y_ add children Y.,
..., Y to node X

#28

Derivation Example

» Grammar E - E+E|ELE | (E)|id

e String id [J1d +1d

 We're going to build a derivation!

#29

Derivation Example (Cont.)

E ™
E+E

E LIE+E

idLE + E
1id[Lhd + E
idlid+id -

>Thus E—* id*id + id

#30

Derivation in Detail (1)

E

#31

Derivation in Detail (2)

#32

Derivation in Detail (3)

E+E A\

E LIE+E

#33

Derivation in Detail (4)

E
. E + E
E +E E X E
idLE + E ‘

#34

Derivation in Detail (5)

E

E+E

E LIE+E
idLIE + E

1d

#35

Derivation in Detail (6)

- /IE\
E+E = . -
BLE+E N \
IdLE + E E * E Id

1d Lid + E S ,‘
1d [Lid + 1d

#36

Notes on Derivations

e A parse tree has
- Terminals at the leaves
- Non-terminals at the interior nodes

o A left-right traversal of the leaves is the
original input

e The parse tree shows the association of
operations, the input string does not!

#37

Q: Radio (117 / 842)

e This NPR radio show features Tom
and Ray Magliozzi as Click and Clack
the Tappet Brothers. It includes
Boston accents, a weekly "Puzzler”,
and is brought to you in part by
"Paul Murky of Murky Research” and
the law firm of "Dewey, Cheetham
and Howe".

Q: Games (548 / 842)

|In the card game Hearts,
how many points would you
accumulate if you ended up
with all of the Queens and all
of the Jacks?

Q: Music (158 / 842)

Name the "shocking” 1976
line dance created by Ric
Silver and sung and
choreographed by Marcia
Griffiths.

Q: Games (582 / 842)

e Minty, Snuzzle, Butterscotch,
Bluebelle, Cotton Candy, and
Blossom were the first six
characters in the 1982 edition of
this series of Hasbro-produced
brushable hoofed dolls with
designs on their hips.

Left-most and Right-most
Derivations

« The example here is a left-
most derivation

- At each step, replace the left-
most non-terminal

e There is an equivalent notion
of a right-most derivation

- Not shown on this slide.
- But coming up next!

E
E+E
E+id

E [hd + 1d
1d [hd +1d

#42

Right-most Derivation in Detail

(1)

E

#43

Right-most Derivation in Detail

(2)

#44

Right-most Derivation in Detail

(3)

-~ E+id

#45

Right-most Derivation in Detail

(4)
E
E E + E
- BB /I\ ‘

#46

Right-most Derivation in Detail

(9)
E
E M\
-~ E+E E + E
. E+id N ‘
E * E Id

> ELE+1d ‘
-~ Elhd +1d id

#47

Right-most Derivation in Detail

(6)
- /IE\
- E+E = . -
- Ehd ﬂ\ ‘
-~ E +1d E * id

#48

Derivations and Parse Trees

e Note that for each parse tree there is a
left-most and a right-most derivation

e The difference is the order in which
branches are added

« We will start with a parsing technique that
yields left-most derivations

- Later we'll move on to right-most derivations

#49

Summary of Derivations

e We are not just interested in whether
s € L(G)

- We also need a parse tree for s

e A derivation defines a parse tree
- But one parse tree may have many derivations

o Left-most and right-most derivations are
important in parser implementation

#50

Review

e A parser consumes a sequence of tokens s
and produces a parse tree

e |SSues:
- How do we recognize that s € L(G) ?
- A parse tree of s describes how s [1 L(G)

- Ambiguity: more than one parse tree
(interpretation) for some string s

- Error: no parse tree for some string s
- How do we construct the parse tree?

#51

int *

I HNEED SOME [WHATS THE
HELP WITH MY | ASSIGNMENT ?

Ambiguity

e (Ambiguous) Grammar G
ESE+E|E*E| (E)|int

e Some strings in L(G)
int +int + int

int + int

I'W SUPROSED TO WRITE
A PAPER THAT PRESENTS
BoTH SIDES OF AN ISSUE

AND THEN DEFENDS ONE
OF THE ARGUMENTS.

WHAT'S
YOUR

THATS THE
PROBLEM. T
CANT THINK
OF ANYTHING

THATS HARD
To BELIEVE.,

I'M ALWALS
RIGHT AND
ENER{BODY
ELSE 15 ALWAY
WRONG ! WHA

Ambiguity. Example

The string int + int + int has two parse trees

E E
/’\ /’\
E + E E . E
S | T
E 4+ E In in E + E
| |t t | |
INt INt INt INt

T

+ is left-associative

#53

Ambiguity. Example

The string int * int + int has two parse trees

E E
/’\ /N
E + E E x E
S | Il
E x E In in E + E
| |t t | |
INt INt INt INt

T

* has higher precedence than +

#54

Ambiguity (Cont.)

« A grammar is ambiguous if it has more
than one parse tree for some string

- Equivalently, there is more than one right-
most or left-most derivation for some string

o Ambiguity is bad
- Leaves meaning of some programs ill-defined
e Ambiguity is common in programming
languages
- Arithmetic expressions
- IF-THEN-ELSE

#55

Dealing with Ambiguity

e There are several ways to handle ambiguity

e Most direct method is to rewrite the
grammar unambiguously

ESE+T|T
T T*int |int | (E)

« Enforces precedence of * over +
e Enforces left-associativity of + and *

#56

Ambiguity. Example

The int * int + int has ony one parse tree now

#57

Ambiguity: The Dangling Else

e Consider this new grammar
E - if EthenE

| if E then E else E
| OTHER

e This grammar is also ambiguous

#58

The Dangling Else: Example

e The string
if E, then if E, then E; else E,

has two parse trees
if if

E, if E4 E, if
E, E; E, E; E,

- Typically we want the second form

#59

The Dangling Else: A Fix

- else matches the closest unmatched then

e We can describe this in the grammar (distinguish
between matched and unmatched “then”)

E - MIF /* all then are matched */
| UIF /* some then are unmatched */
MIF - if E then MIF else MIF
| OTHER

UIF - if E then E
| if E then MIF else UIF

e Describes the same set of strings

#60

The Dangling Else: Example

Revisited
« The expression if E, then if E, then E, else E,

N
E, it
e, E E
» A valid parse tree . Not valid because
(for a UIF) the then expression

is not a MIF

#61

Ambiguity

e No general techniques for handling
ambiguity

o Impossible to convert automatically every
ambiguous grammar to an unambiguous one

« Used with care, ambiguity can simplify the
grammar
- Sometimes allows more natural definitions
- So we need disambiguation mechanisms
- As shown next ...

#62

Precedence and Associativity

Declarations

e Instead of rewriting the grammar
- Use the more natural (ambiguous) grammar
- Along with disambiguating declarations

e Most tools allow precedence and
associativity declarations to
disambiguate grammars

e Examples ...

#63

Associativity Declarations

e Consider the grammar E - E+E | int
- And the string: int + int + int

E E
/N

E + E
I

int int

- Left-associativity declaration: %left +
%left *

#64

Review

e We can specify language syntax using CFG
e A parser will answer whether s [L(G)

e ... and will build a parse tree
e ... and pass on to the rest of the compiler

e Next:

- How do we answer s [1 L(G) and build a parse
tree?

#65

Homework

e Tuesday Feb 12: WA1 (written homework) due
- You must work alone.
- Write or print out your answers.
- Turn in before class Tuesday or in drop-box.

e Tuesday Feb 12: Read Chapters 2.3 - 2.3.2
 Wednesday Feb 13: PA2 (Lexer) Due

- You may work in pairs.

#66

