
#1

Functional ProgrammingFunctional Programming

Introduction To CoolIntroduction To Cool

#2

Cunning Plan
• ML Functional Programming

– Fold
– Sorting

• Cool Overview
– Syntax
– Objects
– Methods
– Types

#3

This is my final day

• ... as your ... companion ... through Ocaml
and Cool. After this we start the interpreter
project.

#4

One-Slide Summary
• Functions and type inference are

polymorphic and operate on more than
one type (e.g., List.length works on int
lists and string lists).

• fold is a powerful higher-order function
(like a swiss-army knife or duct tape).

• Cool is a Java-like language with
classes, methods, private fields, and
inheritance.

#5

Pattern Matching (Error!)
• Simplifies Code (eliminates ifs, accessors)

– type btree = (* binary tree of strings *)
– | Node of btree * string * btree
– | Leaf of string
– let rec height tree = match tree with
– | Leaf _ -> 1
– | Node(x,_,y) -> 1 + max (height x) (height y)
– let rec mem tree elt = match tree with
– | Leaf str | Node(_,str,_) -> str = elt
– | Node(x,_,y) -> mem x elt || mem y elt

bug?

#6

Pattern Matching (Error!)
• Simplifies Code (eliminates ifs, accessors)

– type btree = (* binary tree of strings *)
– | Node of btree * string * btree
– | Leaf of string
– let rec bad tree elt = match tree with
– | Leaf str | Node(_,str,_) -> str = elt
– | Node(x,_,y) -> bad x elt || bad y elt
– let rec mem tree elt = match tree with
– | Leaf str | Node(_,str,_) when str = elt -> true
– | Node(x,_,y) -> mem x elt || mem y elt

#7

Pattern Matching Mistakes

• What if I forget a case?
– let rec is_odd x = match x with
– | 0 -> false
– | 2 -> false
– | x when x > 2 -> is_odd (x-2)
– Warning P: this pattern-matching is not

exhaustive.
– Here is an example of a value that is not

matched: 1

#8

Polymorphism

• Functions and type inference are polymorphic
– Operate on more than one type
– let rec length x = match x with
– | [] -> 0
– | hd :: tl -> 1 + length tl
– val length : α list -> int
– length [1;2;3] = 3
– length [“algol”; ”smalltalk”; ”ml”] = 3
– length [1 ; “algol”] = ?

α means “any
one type”

#9

Higher-Order Functions
• Function are first-class values

– Can be used whenever a value is expected
– Notably, can be passed around
– Closure captures the environment
– let rec map f lst = match lst with
– | [] -> []
– | hd :: tl -> f hd :: map f tl
– val map : (α -> β) -> α list -> β list
– let offset = 10 in
– let myfun x = x + offset in
– val myfun : int -> int
– map myfun [1;8;22] = [11;18;32]

• Extremely powerful programming technique
– General iterators
– Implement abstraction

f is itself a
function!

#10

The Story of Fold
• We’ve seen length and map
• We can also imagine …

– sum [1; 5; 8] = 14
– product [1; 5; 8] = 40
– and [true; true; false] = false
– or [true; true; false] = true
– filter (fun x -> x>4) [1; 5; 8] = [5; 8]
– reverse [1; 5; 8] = [8; 5; 1]
– mem 5 [1; 5; 8] = true

• Can we build all of these?

#11

The House That Fold Built

• The fold operator comes from Recursion
Theory (Kleene, 1952)
– let rec fold f acc lst = match lst with
– | [] -> acc
– | hd :: tl -> fold f (f acc hd) tl

– val fold : (α -> β -> α) -> α -> β list -> α

• Imagine we’re summing a list (f = addition):

9 2 7 4 5 7 4 5… 11
f

4 518 … 27

acc lst

#12

It’s Lego TimeIt’s Lego Time

• Let’s build things out of Fold!
– length lst = fold (fun acc elt -> acc + 1) 0 lst
– sum lst = fold (fun acc elt -> acc + elt) 0 lst
– product lst= fold (fun acc elt -> acc * elt) 1 lst
– and lst = fold (fun acc elt -> acc & elt) true lst

• How would we do or?
• How would we do reverse?

#13

Tougher LegosTougher Legos
• Examples:

– reverse lst = fold (fun acc e -> acc @ [e]) [] lst
• Note typing: (acc : α list) (e : α)

– filter keep_it lst = fold (fun acc elt ->
– if keep_it elt then elt :: acc else acc) [] lst
– mem wanted lst = fold (fun acc elt ->
– acc || wanted = elt) false lst

• Note typing: (acc : bool) (e : α)

• How do we do map?
– Recall: map (fun x -> x +10) [1;2] = [11;12]
– Let’s write it on the board …

#14

Map From Fold

• let map myfun lst =
• fold (fun acc elt -> (myfun elt) :: acc) [] lst

– Types: (myfun : α -> β)

– Types: (lst : α list)

– Types: (acc : β list)

– Types: (elt : α)

• How do we do sort?
– (sort : (α * α -> bool) -> α list -> α list)

Do nothing which is of no use.
- Miyamoto Musashi, 1584-1645

#15

Sorting Examples
• langs = [“fortran”; “algol”; “c”]
• courses = [216; 333; 415]
• sort (fun a b -> a < b) langs

– [“algol”; “c”; “fortran”]

• sort (fun a b -> a > b) langs
– [“fortran”; “c”; “algol”]

• sort (fun a b -> strlen a < strlen b) langs
– [“c”; “algol”; “fortran”]

• sort (fun a b -> match is_odd a, is_odd b with
• | true, false -> true (* odd numbers first *)
• | false, true -> false (* even numbers last *)
• | _, _ -> a < b (* otherwise ascending *)) courses

– [333 ; 415 ; 216]

Java uses
Inner Classes

for this.

#16

Partial Application and Currying

• let myadd x y = x + y
• val myadd : int -> int -> int
• myadd 3 5 = 8
• let addtwo = myadd 2

– How do we know what this means? We use referential
transparency! Basically, just substitute it in.

• val addtwo : int -> int
• addtwo 77 = 79
• Currying: “if you fix some arguments, you get

a function of the remaining arguments”

#17

• ML, Python and Ruby all support ML, Python and Ruby all support
functional programmingfunctional programming
– closures, anonymous functions, etc.closures, anonymous functions, etc.

• ML has strong static typing and type ML has strong static typing and type
inference (as in this lecture)inference (as in this lecture)

• Ruby and Python have “strong” Ruby and Python have “strong”
dynamic typing (or duck typing)dynamic typing (or duck typing)

• All three combine OO and FunctionalAll three combine OO and Functional
– … … although it is rare to use both. although it is rare to use both.

#18

Cool Overview

• Classroom Object-Oriented Language
• Design to

– Be implementable in one semester
– Give a taste of implementing modern features

• Abstraction
• Static Typing
• Inheritance
• Memory management
• And more ...

– But many “grungy” things are left out

#19

A Simple Example

• Cool programs are sets of class definitions
– A special Main class with a special method main
– Like Java

• class = a collection of fields and methods
• Instances of a class are objects

class Point {
x : Int <- 0;
y : Int <- 0;

};

#20

Cool Objects

• The expression “new Point” creates a new
object of class Point

• An object can be thought of as a record with a
slot for each attribute (= field)

class Point {
x : Int <- 0;
y : Int; (* use default value *)

};

0 0

x y

#21

Methods

• A class can also define methods for
manipulating its attributes

• Methods refer to the current object using self

class Point {
x : Int <- 0;
y : Int <- 0;
movePoint(newx : Int, newy : Int) : Point {

{ x <- newx;
 y <- newy;
 self;
} -- close block expression

}; -- close method
}; -- close class

#22

Aside: Semicolons
class Point {

x : Int <- 0;
y : Int <- 0;
movePoint(newx : Int, newy : Int) : Point {

{ x <- newx;
 y <- newy;
 self;
} -- close block expression

}; -- close method
}; -- close class

Yes, it's
somewhat arbitrary.

Still, don't get it wrong.

#23

Information Hiding

• Methods are global
• Attributes are local to a class

– They can only be accessed by that class's methods

class Point {
x : Int <- 0;
y : Int <- 0;
getx () : Int { x } ;
setx (newx : Int) : Int { x <- newx };

};

#24

Methods and Object Layout

• Each object knows how to access the code of
its methods

• As if the object contains a slot pointing to the
code

•
• In reality, implementations save space by

sharing these pointers among instances of the
same class

0 0

x y getx setx

* *

0 0

x y methods

* getx

setx

#25

Inheritance

• We can extend points to color points using
subclassing => class hierarchy

class ColorPoint extends Point {
color : Int <- 0;
movePoint(newx:Int, newy:Int) : Point {

{ color <- 0;
 x <- newx; y <- newy;
 self;
}

};
};

Note references to fields x y –
They're defined in Point!

0 0

x y color movePoint

0 *

#26

Kool Types

• Every class is a type
• Base (built-in, predefined) classes:

– Int for integers
– Bool for booleans: true, false
– String for strings
– Object root of class hierarchy

• All variables must be declared
– compiler infers types for expressions (like Java)

#27

Cool Type Checking

– x : Point;
– x <- new ColorPoint;

• ... is well-typed if Point is an ancestor of
ColorPoint in the class hierarchy
– Anywhere a Point is expected, a ColorPoint can be

used (Liskov, ...)

• Rephrase: ... is well-typed if ColorPoint is a
subtype of Point

• Type safety: a well-typed program cannot
result in run-time type errors

#28

Method Invocation and Inheritance

• Methods are invoked by (dynamic) dispatch
• Understanding dispatch in the presence of

inheritance is a subtle aspect of OO
– p : Point;
– p <- new ColorPoint;
– p.movePoint(1,2);

• p has static type Point
• p has dynamic type ColorPoint
• p.movePoint must invoke ColorPoint version

#29

Other Expressions

• Cool is an expression language (like Ocaml)
– Every expression has a type and a value
– Conditionals if E then E else E fi
– Loops while E loop E pool
– Case/Switch case E of x : Type => E ; ... esac
– Assignment x <- E
– Primitive I/O out_string(E), in_string(), ...
– Arithmetic, Logic Operations, ...

• Missing: arrays, floats, interfaces, exceptions
– Plus: you tell me!

#30

Cool Memory Management

• Memory is allocated every time “new E”
executes

• Memory is deallocated automatically when an
object is not reachable anymore
– Done by a garbage collector (GC)

#31

Course Project

• A complete interpreter
– Cool Source ==> Executed Program
– No optimizations
– Also no GC

• Split in 4 programming assignments (PAs)
• There is adequate time to complete

assignments
– But start early and follow directions

• PA2-4 ==> individual or teams (of max 2)

#32

Homework
• Wednesday: PA 0 due
• Thursday: Chapters 2.1 - 2.2
• Thursday: Dijkstra Paper
•
• Bonus for getting this far: questions about

fold are very popular on tests! If I say “write
me a function that does foozle to a list”, you
should be able to code it up with fold.

