History of Programming Languages

Functional Programming

E
E

BEFoRE I HAND oUT
THE READING LIST, 15
THERE ANYONE HERE

__+ WITH CPR TRAINING?

e e S
o e R S S e

I'VvE GoT A BAD
FEELING ABOUT
THIS CLASS. 1/
R
)
5

e

i

el

C e

+++++
+++++++
+++++
+++++

Cunning Plan

e History Lesson

e Functional Programming
- OCaml
- Types
- Pattern Matching
- Higher-Order Functions
e Basic Syntax
e Data Structures

e Higher-Order Functions
- Fold

#2

Gone In Sixty Seconds

» Imperative: change state, assignments

o Structured: if/block/routine control
flow

e Object-Oriented: message passing (=
dynamic dispatch), inheritance

e Functional: functions are first-class
citizens that can be passed around or
called recursively. We can avoid
changing state by passing copies.

#3

Why Study History?

e Those who cannot remember George
Santayana are condemned to misquote him.

- Supernatural, 1999

#4

Why Study History?

e Progress, far from consisting in change,
depends on retentiveness. Those who cannot
remember the past are condemned to repeat it.

- George Santayana, Life of Reason: Vol.:,
Reason and Common Sense, 1905-1906.

e Through meticulous analysis of history | will
find a way to make the people worship me. By
studying the conquerors of days gone by, I’ll
discover the mistakes that made them go awry.

- The Brain, A Meticulous Analysis of History,
PO31

#5

| invented the term Object-Oriented,
Modern Era ~ and | did not have C++ in mind.
, - Alan Kay

. 1983 Ada
483 C++

e 1987 Pe l

| Jm ple” Java + delegat

€S .

.

Time Travel o D
2 O SOCIALIST
| REVOLUTION

e Back to an earlier
time when the US
was worried about a
Communist “perfect
attack”

e |[n Soviet Russia,
noun verbs you!
(-1 Redundant)

The Land Before Time 3% & i ¥

e It was a time very different now ...
e Joseph McCarthy 1950

- "l have here in my hand a list of 205 —

a list of names ...” SN
e John McCarthy 1958 MII-I.ER
THE CB_CIBLE

- LISP = List Processing Language

- basic datatype is the List, programs
themselves are lists, can self-
modify, dynamic allocation,
garbage collection (!), functional

There are only two kinds of | fear the new OO systems may suffer the
programming languages: those people fate of LISP, in that they can do many

always [complain] about and those things, but the complexity of the class
nobody uses. hierarchies may cause them to collapse
- Bjarne Stroustrup under their own weight.
- Bill Joy
FORTRAN '54

Object-
Oriented

COBOL '59 ALGOL '60 Structured LISP'58
\‘ / \Imperati‘vy

PASCAL 70 C'72 ML '73 SMALLTALK "72

\

ADA '3

Computer language design
is just like a stroll in the
park. Jurassic Park, that is.
- Larry Wall

PERL '87

~

PYTHON "90

JAVA'91

/

C# 2000

Oh what a tangled web we weave, \
When first we practise to deceive! RUBY '95

- Sir Walter Scott, 1771-1832 40

Functional Programming

e You know OO and Structured Imperative

e Functional Programming
- Computation = evaluating (math) functions
- Avoid “global state” and “mutable data”
- Get stuff done = apply (higher-order) functions
- Avoid sequential commands

e Important Features
- Higher-order, first-class functions
- Closures and recursion
- Lists and list processing

#10

State

e The state of a program is all of the current
variable and heap values

« Imperative programs destructively modify
existing state

SET {X} add _elem(SET, y)

#11

e The state of a program is all of the current

State

variable and heap values

« Imperative programs destructively modify

existing state

SET {x,v}

#12

State

e The state of a program is all of the current
variable and heap values

« Imperative programs destructively modify
existing state

. SET {x,v}

e Functional programs yield new similar states

over time
SET 2 = add elem(SET 1, y)

SET 1 {x}

#13

State

e The state of a program is all of the current
variable and heap values

« Imperative programs destructively modify

existing state

SET {x,v}

e Functional programs yield new similar states

over time

SET 2 = add_elem(SET_1, y

SET 1 {x}

)

SET_2 {x,y}

#14

Basic OCaml
e Let's Start With C

double avg(int x, int y) {
double z = (double)(x + y);
z=2/2;
printf(“Answer is %g\n”, z);
return z;

}

#15

Basic OCaml
e Let's Start With C

double avg(int x, int y) {
double z = (double)(x + y);
z=2/2;
printf(“Answer is %g\n”, z);
return z; et avg (x:int) (y:int) : float = begin

}

end

#16

Basic OCaml
e Let's Start With C

double avg(int x, int y) {
double z = (double)(x + y);

z=2]/2;

printf(“Answer is %g\n”, z);

return z; et avg (x:int) (y:int) : float = begin
} let 2 = float_of _int (x +y) in

end

#17

Basic OCaml
e Let's Start With C

double avg(int x, int y) {
double z = (double)(x + y);
z=2]/2;
printf(“Answer is %g\n”, z);

return z; et avg (x:int) (y:int) : float = begin

} let z = float_of_int (x + y) in
letz=2z/.2.0in

end

#18

Basic OCaml
e Let's Start With C

double avg(int x, int y) {
double z = (double)(x + y);

z=2]/2;

printf(“Answer is %g\n”, z);

return z; et avg (x:int) (y:int) : float = begin
} let z = float_of_int (x + y) in

letz=2z/.2.0in
printf “Answer is %g\n” 2 ;

end

#19

Basic OCaml
e Let's Start With C

double avg(int x, int y) {
double z = (double)(x + y);

z=2]2;
printf(“Answer is %g\n”, z);
return z; ot avg (x:int) (y:int) : float = begin
} let z = float_of_int (x + y) in
letz=2z/.2.0in
printf “Answer is %g\n” z ;
y

end

#20

The Tuple (or Pair)

e let x = (22, 58) in (* tuple creation *)
e lety, z =xin (* tuple field extraction *)
o printf “first element is %d\n” vy ; ...

e let add_points p1 p2 =
e letx1,y1=p1in
e letx2,y2=p2in
e (x1+x2,y1+y2)

#21

List Syntax in OCaml

« Empty List []

e Singleton [element]

e Longer List [e1;e2;e3]

e Cons X :: [y;z] = [X;Y;Z]

» Append [wixl@[y;z] = [w;x;y;z]

e List.length, List.filter, List.fold, List.map ...
e More on these later!
e Every element in list must have same type

#22

Functional Example

o Simple Functional Set (built out of lists)
- let rec add_elem (s, e) =
- if s =[] then [e]
- elseif List.hds = ethens
- else List.hd s :: add_elem(List.tl s, e)

e Pattern-Matching Functional (same effect)
- let rec add_elem (s,e) = match s with
- | [1-> [e]
- hd :: tilwhene =hd ->s
- hd :: tl -> hd :: add_elem(tl, e)

#23

Imperative Code

e More cases to handle
- List* add_elem(List *s, item e) {
- if (s == NULL)

B return hSt(e, NULL)’ | have stopped reading Stephen

- else if (s->hd == e) King novels. Now I just read C
. code instead.
) return s; - Richard O’Keefe

- else if (s->tl == NULL) {

- s->tl = list(e, NULL); return s;
- }else

- return add_elem(s->tl, e);

- 3

#24

Q: Advertising (785 / 842)

o |dentify the company associated
with two of the following four
advertising slogans or symbols.

- "Fill it to the rim.”

- "l bet you can't eat just one.”
- "Snap, Crackle, Pop®

- "The San Francisco Treat”

Functional-Style Advantages

e Tractable program semantics
- Procedures are functions
- Formulate and prove assertions about code
- More readable

e Referential transparency

- Replace any expression by its value without
changing the result

e No side-effects
- Fewer errors

#26

Functional-Style Disadvantages

Language Speed | Space
¢ o C (gco) 1.0 1.1
° Eff]C]enCy C++ (g++) 1.0 1.6
- Copying takes time oCaml 1.5 | 2.9
» Compiler implementation iasvpa e L
- Frequent memory allocation | c# (mono) 2.4 |5.6
op e Python 6.5 3.9
e Unfamiliar (to you!) oy —
- New programming Style 17 small benchmarks

e Not appropriate for every program
- Operating systems, etc.

#27

ML Innovative Features

o Type System There are many ways of trying to
understand programs. People often rely
- Strongly typed too much on one way, which is called
_ : “debugging” and consists of running a
Type inference partly-understood program to see if it
- Abstraction does what you expected. Another way,
which ML advocates, is to install some
e Modules means of understanding in the very
programs themselves.
e Patterns - Robin Milner, 1997

e Polymorphism
« Higher-order functions
e Concise formal semantics

#28

Type System

e Type Inference

- let rec add_elem (s,e) = match s with

- | [1->[e]

- hd :: tlwhene =hd ->s

- hd :: tl -> hd :: add_elem(tl, e)

- val add_elem : a list * a -> o list

- “a list” means “List<T>” or “List<a>"
e ML infers types

- Inconsistent or incomplete type is an error

e Optional type declarations (exp : type)
- Clarify ambiguous cases, documentation

#29

Pattern Matching
o Simplifies Code (eliminates ifs, accessors)
- type btree = (* binary tree of strings *)
- | Node of btree * string * btree
- | Leaf of string
- let rec height tree = match tree with
- | Leaf _->1
- | Node(x,_,y) -> 1 + max (height x) (height y)
- let rec mem tree elt = match tree with
- | Leaf str | Node(_,str,_) -> str = elt
- | Node(x,_,y) ->mem x elt || memy elt

#30

Pattern Matching Mistakes

 What if | forget a case?
- let rec is_odd x = match x with
- 0 -> false
- 2 -> false
- X when x > 2 -> is_odd (x-2)

- Warning P: this pattern-matching is not
exhaustive.

- Here is an example of a value that is not
matched: 1

#31

Polymorphism

e Functions and type inference are polymorphic

- Operate on more than one type
let rec length x = match x with

O means “any
ength tl one type”

1 [1->0
| hd ;s tl-> 1+

val length : a list=> int
ength [1;2;3] =3
length

ength [1; “algol”

“algol”; "smalltalk”; "ml”] = 3

= 7

#32

Higher-Order Functions

e Function are first-class values
- Can be used whenever a value is expected
- Notably, can be passed around
- Closure captures the environment

- let rec map f Ist = match Ist with
- 111->1] f is itself a

- | hd::tl->fhd:: mapftl et
- valmap : (a ->) -> a list -> 3 list
- let offset = 10 in ~__
- let myfun x = x + offset in
- val myfun : int -> int
- map myfun [1;8;22] =[11;18;32]
o Extremely powerful programming technique
- General iterators
- Implement abstraction

#33

sum
product
and

or

filter
reverse
mem

The Story of Fold

« We’ve seen length and map
e We can also imagine ...

15 5; 8]

15 5; 8]
true; true; fa
true; true; fa
(fun x -> x>4)
[155; 8]

5 [1;5; 8]

e Can we build all of these?

=14

=40
se] = false
se] = true

15 5; 8] =15; 8]
= [8; 5; 1]
= true

#34

The House That Fold Built

e The fold operator comes from Recursion
Theory (Kleene, 1952)
- let rec fold f acc st = match st with
- | [] -> acc
- | hd :: tl -> fold f (f acc had) tl
-valfold: (a->B->a)->a ->B list->a
e Imagine we’re summing a list (f = addition):
9bi2b{7b4b5b | - % l7St+4+5»[]

@l
18] 450) ~ [2Z1

#35

It’s Lego Time

e Let’s build things out of Fold!
- length lst = fold (fun acc elt -> acc + 1) O st

- sum st = fold (fun acc elt -> acc + elt) O Ist
- product lst= fold (fun acc elt -> acc * elt) 1 st

-and st = fold (fun acc elt -> acc & elt) true Ist
« How would we do or? N7 25
« How would we do reverse?

Tougher Legos

e Examples:
- reverse st = fold (fun acc e -> acc @ [e]) [] lst
« Note typing: (acc : a list) (e : a)
- filter keep_it Ist = fold (fun acc elt ->
- if keep_it elt then elt :: acc else acc) [] st
- mem wanted lst = fold (fun acc elt ->
- acc | | wanted = elt) false Ist
« Note typing: (acc : bool) (e : a)
« How do we do map?
- Recall: map (fun x -> x +10) [1;2] = [11;12]
- Let’s write it on the board ...

#37

Map From Fold

e let map myfun st =

o fold (fun acc elt -> (myfun elt) :: acc) [] st
- Types: (myfun : a -> 3)

Do nothing which is of no use.

- Types: (Ist : o list) - Miyamoto Musashi, 1584-1645

- Types: (acc : B list)
- Types: (elt : a)
« How do we do sort?
- (sort : (a * a -> bool) -> a list -> a list)

#38

Sorting Examples

langs = [“fortran”; “algol”; “c”]

courses = [216; 333; 415]

sort (funab -> a < b) langs

- [“algol”; “c”; “fortran”] Java uses

sort (funab ->a > b) langs Inner Classes
_ [“fOrtran”; “C”; “alg()l”] fOF this.

sort (fun a b -> strlen a < strlen b) langs
- [“c”; “algol”; “fortran”]

sort (fun a b -> match is_odd a, is_odd b with
true, false -> true (* odd numbers first *)
false, true -> false (* even numbers last *)

_, _->a< b (* otherwise ascending *)) courses
- [333;415; 216]

#39

Partial Application and Currying

e letmyaddxy=x+y

e val myadd : int -> int -> int
e myadd 35 =328

e let addtwo = myadd 2

- How do we know what this means? We use referential
transparency! Basically, just substitute it in.

e val addtwo : int -> int
e addtwo 77 =79

e Currying: “if you fix some arguments, you get
a function of the remaining arguments”

#40

ML, Python and Ruby allisupport
functional programming

- closures, anonymous functions, etc.

e ML has strong static typing and type
inference (as in this lecture;

» Ruby and Python have “strong”

dynamic typing (or duck typing)
« All three combme 00 and Functional
- although it is rare to use both.

MULTIFUNCTIONALTY

One tool. One million uses.

Homework

e Thursday: Cool Reference Manual
e Thursday: Backus Speedcoding
e Friday: PAO due

#42

