
#1

Programming Language Programming Language
Design and ImplementationDesign and Implementation

Wes Weimer
TR 2:00 to 3:15

OLS 005

#2

Cunning Plan
• Who Are We?

– Wes, Claire

• Administrivia
• What Is This Class About?
• Brief History Lesson
• Understanding a Program in Stages

#3

Your Host For The Semester

#4

Course Staff - TA
• Claire le Goues
• Email: csl9q

#5

Course Home Page

• google: virginia cs 415
• www.cs.virginia.edu/~cs415/
• Lectures slides are available before class

– You should still take notes!

• Assignments are listed
– also grading breakdown, regrade policies, etc.

• Use the class forum for all public questions

http://www.cs.virginia.edu/~cs415/

#6

Discussion Sections

• There will be one sixty-minute “structured
office hour” each week
– Hosted by Claire, the TA

• We will not take attendance, but you are
encouraged to show up each week
– Notes posted on web
– For your benefit!

• Answer questions, go over lecture material,
help and hints on the homework and projects

• Next Week: pass around time signup sheet

#7

#8

#9

Course Structure
• Course has theoretical and practical aspects

– Best of both worlds!

• Need both in programming languages!
• Reading = both

– Many external and optional readings
• Written assignments = theory

– Class hand-in, right before lecture, 0-5 points
• Programming assignments = practice

– Electronic hand-in
• Strict deadlines

#10

Academic Honesty

• Don’t use work from uncited sources
– Including old code

• We often use plagiarism detection software

 PLAGIARISM

#11

Academic Honesty

• Don’t use work from uncited sources
– Including old code

• We often use plagiarism detection software

#12

The Course Project

• A big project: an Interpreter!
• … in five easy parts
• Start early!

#13

How are Languages Implemented?

• Two major strategies:
– Interpreters (take source code and run it)
– Compilers (translate source code, run result)
– Distinctions blurring (e.g., just-in-time compiler)

• Interpreters run programs “as is”
– Little or no preprocessing

• Compilers do extensive preprocessing
– Most implementations use compilers

#14

Don’t We Already Have Compilers?

#15

Dismal View Of Prog Languages

 C++

Java
(or C#)

#16

(Short) History of High-Level
Languages

• 1953 IBM develops the 701 “Defense Calculator”
– 1952, US formally ends occupation of Japan
– 1954, Brown v. Board of Education of Topeka, Kansas

• All programming done in assembly

• Problem: Software costs exceeded hardware
costs!

• John Backus: “Speedcoding”
– An interpreter
– Ran 10-20 times slower than hand-written assembly

#17

FORTRAN I

• 1954 IBM develops the 704
• John Backus

– Idea: translate high-level code to assembly
– Many thought this impossible

• 1954-7 FORTRAN I project
• By 1958, >50% of all software is in FORTRAN
• Cut development time dramatically

– (2 weeks ! 2 hours)

#18

FORTRAN I
• The first compiler

– Produced code almost as good as hand-written
– Huge impact on computer science

• Led to an enormous body of theoretical work
• Modern compilers keep the outlines of

FORTRAN I

Q: TV (100 / 842)

•In this 1985-1992 ABC television
series, the gunless title
character Angus works for Pete
and the Phoenix Foundation and
makes heavy use of his Swiss
Army knife and duct tape.

#20

The Structure of an Interpreter

• Lexical Analysis
• Parsing
• Semantic Analysis
• Optimization (optional)
• Run It!

 The first 3, at least, can be understood by
analogy to how humans comprehend English.

This is the class
programming project!

#21

Lexical Analysis

• First step: recognize words.
– Smallest unit above letters

 This is a sentence.

• Note the
– Capital “T” (start of sentence symbol)
– Blank “ ” (word separator)
– Period “.” (end of sentence symbol)

#22

More Lexical Analysis
• Lexical analysis is not trivial. Consider:

How d’you break “this” up?
• Plus, programming languages are typically

more cryptic than English:
*p->f += -.12345e-6

#23

And More Lexical Analysis

• Lexical analyzer divides program text into
“words” or tokens

if x == y then z = 1; else z = 2;

• Broken up:
if, x, ==, y, then, z, =, 1, ;, else, z, =, 2, ;

#24

Parsing

• Once words are understood, the next step
is to understand sentence structure

• Parsing = Diagramming Sentences
– The diagram is a tree

#25

Diagramming a Sentence

This line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence

#26

Parsing Programs

• Parsing program expressions is the same
• Consider:

if x == y then z = 1; else z = 2;
• Diagrammed:

if-then-else

x y z 1 z 2==

assignrelation assign

predicate else-stmtthen-stmt

#27

Semantic Analysis

• Once sentence structure is understood, we
can try to understand “meaning”
– But meaning is too hard for compilers

• Compilers perform limited analysis to catch
inconsistencies: reject bad programs early!

• Some do more analysis to improve the
performance of the program

#28

Semantic Analysis in English

• Example:
Kara said Sharon left her sidearm at home.

What does “her” refer to? Kara or Sharon?

• Even worse:
Sharon said Sharon left her sidearm at home.

How many Sharons are there?
Which one left the sidearm?

#29

Semantic Analysis in Programming

• Programming
languages define
strict rules to avoid
such ambiguities

• This C++ code prints
“4”; the inner
definition is used

{
int Sydney = 3;
{

int Sydney = 4;
cout << Sydney;

}
} Scoping or

aliasing
problem.

#30

Differential Diagnosis, People!

• Compilers perform many semantic checks
besides variable bindings

• Example:
Gregory House left her cane at home.

• A “type mismatch” between her and Gregory
House; we know they are different people
– Presumably Gregory House is male

#31

Optimization

• No strong counterpart in English, but akin to
editing

• Automatically modify programs so that they
– Run faster
– Use less memory
– In general, conserve some resource

• The project has no optimization component

#32

Code Generation

• Produces assembly code (usually)
– which is then assembled into executables by an

assembler

• A translation into another language
– Analogous to human translation

• We will not do codegen in this class
– Instead you will interpret the program directly!

#33

Issues
• Compiling and interpreting are

almost this simple, but there
are many pitfalls.

• Example: How are bad programs handled?
• Language design has big impact on compiler

– Determines what is easy and hard to compile
– Course theme: trade-offs in language design

#34

Languages Today

• The overall structure of almost every
compiler & interpreter follows our outline

• The proportions have changed since FORTRAN
– Early: lexing, parsing most complex, expensive

– Today: optimization dominates all other phases,
lexing and parsing are cheap

– ... but still matter, ramble ramble ...

#35

Trends in Languages

• Optimization for speed is less interesting. But:
– scientific programs
– advanced processors (Digital Signal Processors,

advanced speculative architectures)
– Small devices where speed = longer battery life

• Ideas we’ll discuss are used for improving code
reliability:
– memory safety
– detecting concurrency errors (data races)
– type safety
– automatic memory management
– …

#36

Why Study Prog. Languages?

• Increase capacity of expression
– See what is possible

• Improve understanding of program behavior
– Know how things work “under the hood”

• Increase ability to learn new languages
• Learn to build a large and reliable system
• See many basic CS concepts at work

#37

What Will You Do In This Class?

• Reading (textbook, outside sources)
• Learn about different kinds of languages

– Imperative vs. Functional vs. Object-Oriented
– Static typing vs. Dynamic typing
– etc.

• Learn to program in different languages
– Python, Ruby, ML, “Cool” (= micro-Java)

• Complete homework assignments
• Write an interpreter!

#38

What Is This?

#39

The Rosetta Stone
• The first programming assignment

involves writing the same simple
(50-75 line) program in:
– Ruby, Python, OCaml, Cool and C

• PA0, due Wed Jan 30, requires you to write
the program in two languages (you pick)

• PA1, due one week later, requires all five
Long, long be my heart with such memories fill'd!
Like the vase in which roses have once been distill'd:
You may break, you may shatter the vase if you will,
But the scent of the roses will hang round it still.

- Thomas Moore (Irish poet, 1779-1852)

#40

Homework
• Scott Book, parts of Chapter 10 (for Thursday)
• Get started on PA0 (due in 8 days)

Questions?

