A SYNTACTIC APPROACH TO TYPE SOUNDNESS

Andrew K. Wright* Matthias Felleisen*

Department of Computer Science
Rice University

Houston, TX 77251-1892
June 18, 1992

Rice Technical Report TR91-160
To appear in: Information and Computation

Abstract

We present a new approach to proving type soundness for Hindley/Milner-style
polymorphic type systems. The keys to our approach are (1) an adaptation of subject
reduction theorems from combinatory logic to programming languages, and (2) the use
of rewriting techniques for the specification of the language semantics. The approach
easily extends from polymorphic functional languages to imperative languages that
provide references, exceptions, continuations, and similar features. We illustrate the
technique with a type soundness theorem for the core of STANDARD ML, which includes
the first type soundness proof for polymorphic exceptions and continuations.

1 Type Soundness

Static type systems for programming languages attempt to prevent the occurrence of type
errors during execution. A definition of type error depends on a specific language and
type system, but always includes the use of a function on arguments for which it is not
defined, and the attempted application of a non-function. A static type system is sound if
well-typed programs cannot cause type errors; a programming language with a sound static
type system is strongly typed [7].

While it is easy to design a sound type system for an explicitly typed monomorphic
language, the formulation of a sound type system for a language based on Hindley/Milner-
style polymorphism and type inference is delicate [6, 8, 15, 17, 20, 37]. Although the
treatment of purely functional languages is relatively well understood in this framework,
the incorporation of imperative features such as references and exceptions requires extreme
care, and the soundness of such systems is not obvious. A formal proof of soundness is

*This research was supported in part by the United States Department of Defense under a National
Defense Science and Engineering Graduate Fellowship, by NSF grant CCR 89-17022, and by Texas Grant
ARP/ATP-91 #003604-014.

Syntactic Type Soundness 2

required to lend credibility to the claim that such a system prevents type errors, and may
be a crucial tool in the design of the type system.

We view a static type system for an implicitly typed language as a filter that selects
well-typed programs from a larger universe of untyped programs. A partial function eval :
Programs — Answers U {WRONG} defines the semantics of untyped programs. The result
WRONG is returned for programs whose evaluation causes a type error; eval is undefined
for programs whose evaluation does not terminate. Let > e : 7 mean that the type system
assigns program e the type 7, i.e., e is well-typed. The simplest soundness property states
that well-typed programs do not yield wronG [20].

Definition (Weak Soundness) If > e : 7 then eval(e) # WRONG.

While weak soundness establishes that a static type system achieves its primary goal of
preventing type errors, it is often possible to demonstrate a stronger property that relates
the answer produced to the type of the program. If we view each type 7 as denoting
different subsets V7 of the set of all answers V, then strong soundness states that an
answer v produced by a terminating program of type 7 is an element of the subset V7.

Definition (Strong Soundness) If >e: 7 and eval(e) = v then v € V7.

Strong soundness permits an implementation of the language to associate the representation
of a value with its type, and thereby omit the representation tags required by dynamically
typed languages. Weak soundness follows from strong soundness since WRONG is not a
member of V7 for any type 7.

Significant effort has been invested in proving type soundness for Hindley/Milner-style
type systems, and their practical realization in the programming language STANDARD
ML [22, 23]. Soundness proofs exist for the functional fragment [20, 36], for extensions
including references [6, 17, 35, 37], and for a monomorphic language including first-class
continuations [8]. However, there are several drawbacks to the existing proofs. Proofs of
type soundness are sensitive to the precise formulation of the semantics of the language—
different techniques are required for denotational versus operational formulations of the se-
mantics, and even for different languages within the same semantic framework. The proofs
for two different languages are diflicult to reconcile to prove soundness for a language in-
cluding features of both. The existing techniques are complicated, and the resulting proofs
are lengthy and error-prone. For an illustration of the difficulties with such proofs, we refer
the reader to Tofte’s [37] discussion of Damas’s [6] faulty proof of a type soundness theorem
for a polymorphic language with references.

We present a simple approach to the proof of soundness for Hindley/Milner-style poly-
morphic type systems. Our approach is based on subject reduction, a classical result
from combinatory logic [4], and on rewriting as a means to specifying operational seman-
tics [11, 12, 13, 14]. To demonstrate the approach, we develop a proof of soundness for
the core! of STANDARD ML, which extends a functional polymorphic language with refer-
ences and exceptions. We also show soundness for an extension to STANDARD ML with
first-class continuations. In principle, our approach is uniformly applicable to any language;

! Mitchell and Harper refer to the functional polymorphic sublanguage as the essence of ML [24]. However,
the difficulties of typing references and exceptions [6, 17, 35, 37] and the fact that they cannot be expressed
by facilities of the functional core [10] indicate that they are equally important.

Syntactic Type Soundness 3

in practice, the resulting proofs are lengthy but simple, requiring only ordinary inductive
techniques.

In the next section, we describe a prototypical functional language with a polymorphic
type system, and discuss the various approaches that have previously been used to prove
type soundness. Section 3 presents the essence of our approach to proving type soundness;
the remaining sections develop illustrative proofs of type soundness for a specific functional
language and various extensions.

2 Previous Approaches to Proving Type Soundness

Any proof of type soundness is intimately tied to the formulation of the semantics of the
language. The earlier proofs relied on denotational semantics; later proofs used structural
operational semantics. The following two subsections briefly present these approaches from
a historical perspective. The third subsection discusses the problems with them. We begin
with a brief introduction to the formulation of Hindley /Milner-style type systems, in order
to introduce our notation.

Our prototypical functional language has the following (abstract) syntax:

enx=c|a|Az.e|ey ey |let beeyin ey

where z € Var and ¢ € Const. Constants (Const) include both data (integer, real, boolean,
etc.) and operations (4, +, A, V, etc.). Variables (Var) are lexically scoped. Juxtaposition
denotes application and is left associative; A-expressions construct call-by-value procedural
abstractions. Semantically the let-expression behaves like ((Az.e2) e1), binding the value of
e1 to z in ey; however, the type system allows z to be polymorphic: different occurrences
of z in e5 may be assigned different types.

A polymorphic type system for this language has types of the form:

Tu=u || 11—

where ¢1,...,t, are ground types like int and bool. The type system is formulated as
a deductive proof system that assigns types to expressions. The proof system produces
conclusions, or lype judgments, of the form I' > e : 7, meaning that expression e has type
7 in type environment I'. Type environments are finite maps from variables to types, and
are used to give types to open expressions. The typing rules are:

(var) I'va:r if I'(a)=r1

(const) Fec:r if TypeOf(c)=T

(abs) [z~ m]ve:n
I'sdze:ry =1

() I'ver:mm—m Ibey:my

a

PP I'bep eg:m
(let) Toep:m Toezr—er]:m

I'vlet z beejineg:m

Syntactic Type Soundness 4

The function TypeOf assigns types to constants. I'[z — 7] denotes the functional extension
or update of map I' at = to 7; e[z — €'] means the capture-avoiding substitution of €’ for z
in e. Programs are closed expressions. A program e is well-typed if it has a type 7 in the
empty type environment; we then write > e : 7.

2.1 Proofs based on Denotational Semantics

Milner [20]: Milner formulated and proved a type soundness theorem for a functional
language like the above based on a denotational semantics for the language of untyped
expressions. The semantic domain is the solution of the following reflexive domain equa-
tion [32]:

V = By®...oB, aFaW

F = V-V

Bo, . ..,B, are basic domains (with bottom), such as integers and booleans; F is the function
domain; W is a domain consisting of the single element WRONG; @ is the separated sum;
and — builds continuous functions. The meaning function & is constructed so as to assign
the denotation WRONG to programs that result in type errors. To assign meanings to
expressions with free variables, the meaning function takes an environment p : Var —e— V,
a finite map from variables to denotational values.

To establish soundness, Milner introduced a semantic relation |=. This relation identifies
each type 7 with an ideal V™ of the domain V [18]. An ideal is simply a subset of the domain
that is closed under certain operations (subset and least upper bounds of finite consistent
subsets); each of the basic domains forms an ideal. A denotational value v € V possesses
type 7, written |= v : 7, if v is a member of the ideal corresponding to 7, i.e.,

veVTiff Eov:T.

An environment p respects a type environment I', written |= p : T', if the domain of p is at
least as large as the domain of I', and for every variable z in the domain of I, |= p(z) : I'(z).
A semantic soundness theorem states that if an expression e has type 7 in type environment
I', and if environment p respects I', then the denotation of e in p possesses type T.

Theorem (Semantic Soundness) If 've:7 and |Ep: T then = E[e]p:T.

This theorem is proved by induction on the structure of e. Strong soundness follows by
restricting the theorem to closed expressions.

Theorem (Strong Soundness) If >e:7 then = E[e]d: 7.
Weak soundness is a consequence of the fact that WRONG does not possess any type.

Theorem (Weak Soundness) If ve: 7 then E[e]) # WRONG.

Syntactic Type Soundness 5

Damas [5, 6]: Damas extended Milner’s results to a language with reference cells and
destructive assignment. The proof technique is derived from Milner’s technique; however,
the proof is significantly more complicated. The denotational semantics uses the following
domain construction:

V = Byg... B, oFpLeW
F = V-S—-V®S

S = v

L = N

where the domain of locations L is the flat domain of natural numbers, S is the domain
of stores (sequences of values), and ® is the smash product. Procedures take both an
input value and a store, and produce a result and a new store. The meaning function is
parameterized over both a store and an environment. Due to the presence of stores, types
are no longer ideals in V, but are finite maps from store typings to subsets of V.2 A store
typing is a finite map from locations to the types of values stored there. Since the semantic
relation (=) must involve the types of values in the store, it can no longer be defined by
induction on types; its existence must be established by a category theoretical argument
that generalizes the technique of inclusive predicates [31]. The complexity of the semantic
relation complicates the proof; indeed, Tofte found a mistake in Damas’s proof, although
the theorem is not thought to be false [37: page 2].

Abadi, Cardelli, Pierce, and Plotkin [1]: Abadi ef al. demonstrate type soundness
for a functional language with a dynamic type and related operations. Their proof with
respect to a denotational semantics is similar to Milner’s proof, although it is complicated
by the presence of dynamic values. A dynamic value is a pair consisting of a value v and a
tag, drawn from a set TypeCode, that encodes the type of v. The domain equation includes
a domain of dynamic values D:

V = Bye...oB, e FeDaeW
F = V-V
D = TypeCode x V

As type codes correspond to types, the denotation of a type code is a type. Types, in turn,
denote ideals over V, but due to the unusual element D of the domain equation, establishing
that types denote ideals requires extending the ideal model for recursive types [18]. The
proof that the required fixed points exist in the new model involves a metric space argument,
but is a straightforward extension of the original. Although the type system Abadi el al.
use is not polymorphic, it should be possible to extend the type system and the soundness
proof to include polymorphism.

Duba, Harper, and MacQueen [8]: Duba et al. present several languages extending
a monomorphic functional core with first-class continuations in the spirit of Scheme [28].
They describe several approaches to proving type soundness for the languages. One is with

2This is an over-simplification; the reader interested in the precise definition is referred to Damas’s
thesis [6].

Syntactic Type Soundness 6

respect to a continuation-passing denotational semantics, based on the following domain
equations:

Bod...oB,oFK

V-K-=A

V—-A

Vg Ww

AT
l

where K is the domain of continuations, and A is the domain of answers. The meaning
function & takes both an environment and a continuation. Two semantic relations state
what it means for a value v to possess a type 7, written |= v : 7, and for a continuation
to accept a value of type 7, written |= & :: 7. These relations are defined simultaneously
by induction on types. The semantic soundness theorem states that if an expression e has
type 7 in type environment I', and if p respects I', and if continuation s accepts values of
type 7, then the meaning of e in environment p and continuation is not WRONG.

Theorem (Semantic Soundness) If 've:7 and |=p: 1 and |= K :: 7 then E[e]pr #
WRONG.

Unlike in the purely functional setting, the semantic soundness theorem only states that
well-typed programs do not go WRONG (weak soundness), not that they produce answers
of the expected type. To approach strong soundness, Duba et al. give an argument based
on a continuation-passing-style (CPS) translation into the simply typed A-calculus. For
programs of ground type, the denotation of an expression is the same as the denotation of
its CPS transform with the identity function as an initial continuation, i.e.,

Ele]d = E[CPS(e) (Az.z)]0.

Since strong soundness holds for the simply typed A-calculus, and (CPS(e) (Az.z)) has the
same type as e for programs of ground type, strong soundness holds for programs of ground
type. However, the argument does not extend to higher types. For further details, we refer
the reader to their paper [8: page 169].

2.2 Proofs based on Structural Operational Semantics

Tofte [36, 37]: Tofte reformulated Milner’s functional language with a structural opera-
tional semantics [27]. The semantics is specified as a deductive proof system; a conclusion
FE F e = v of a deduction states that expression e evaluates to v in value environment F. A
value environment is a finite map from variables to operational values. Values are either ba-
sic constants or closures, which result from the evaluation of A-expressions. The soundness
theorem again requires the definition of a semantic relation (|=) between operational values
and types. For basic constants, the relation is explicitly specified by the function TypeOf;
for closures, the relation is defined by induction on types, and by evaluation at correctly
typed argument values. The semantic soundness theorem states that if an expression e has
type 7 in type environment I', and if environment F respects I', and if e evaluates to a value
v in environment F, then v possesses type 7.

Theorem (Semantic Soundness) If I've:7and E E: T and EFe= v ithen|=v:T.

Syntactic Type Soundness 7

The proof is straightforward, and proceeds by induction on the depth of the deduction of
E e = v. Strong and weak soundness follow as before.

Tofte turned to structural operational semantics in order to consider references. To
this end, he reformulated the semantics with conclusions of the form s, F + e = v,s,
meaning that in environment E and store s, expression e evaluates to value v and the new
store s’. The semantic relation now involves the contents of the store and the store typing
(ST), a map from locations to the types of values stored there. The semantic relation
s : ST |= v : 7 may be read as “given the ST-typed store s, value v possesses type 7.”
Because of the possibility of cycles amongst references in the store, this relation is not
definable by induction, but must be defined as the maximal fixed-point of a monotonic
operator on the appropriate space. The semantic soundness theorem states that if an
expression e has type 7 in type environment I', and given store s of type ST, environment
E respecting I', and that e evaluates to v and store s, then a typing S7" can be found for
s’ such that v possesses type 7.

Theorem (Semantic Soundness) If 've:Tand s: ST = FE:1' and s,EFe=v,s
then there exists ST' such that s : ST = v : 7.

The theorem is proved by induction on the depth of the deduction of s, F F e = v,s'.
Lemmas involving the semantic relation are proved using the technique of co-induction
that Milner and Tofte developed for this purpose [21]. Leroy and Weis have successfully
applied Tofte’s technique to show soundness for a different type system for polymorphic ref-
erences [17]. Talpin and Jouvelot have also applied the technique to demonstrate soundness
for a system that infers types, effects, and regions for references [35].

Duba, Harper, and MacQueen [8]: Duba et al. also present a proof of type sound-
ness with respect to a structural operational semantics for a monomorphic language with
continuations. The proof is an adaptation of Tofte’s technique; however, the semantics is
significantly restructured, as the technique of defunctionalization [30] is used to represent
the flow of control explicitly. The semantics has two judgment forms. The first kind of
conclusion, F; K - e = v, indicates that expression e evaluates to answer v in environment
E and continuation K. The second kind of conclusion, v = K = v’, indicates that continu-
ation K evaluated at value v produces answer v’. As in the denotational case, two semantic
relations are defined, indicating what it means for a value to possess a type (= v : 7), and
for a continuation to accept a type (= K :: 7). Like the denotational case, the theorem
only establishes weak soundness.

Theorem (Semantic Soundness) If ' v e : 7 and | E : T and E K :: 7 and
E;KFe= v then v # WRONG.

It is not clear that the proof goes through in the presence of fixed-point operators [8: page
171], nor how to obtain strong soundness in this framework.
2.3 Discussion

In each case above, the proof of soundness for a language or for a different formulation
of a language’s semantics involves the use of a different proof technique. The techniques

Syntactic Type Soundness 8

are often unrelated, so they provide no guidance in proving soundness for new languages
or language features. A seemingly minor extension to a language may require a complete
restructuring of its denotational or structural operational semantics, and may therefore
require a completely new approach to re-establish soundness. For example, in introduc-
ing references to Milner’s functional language, Damas changed the domain equations for
the denotational semantics to accommodate a store component, necessitating a completely
different strategy for induction. In introducing type dynamic, Abadi el al. again changed
the domain equations, and extended the ideal model of types to match. To accommodate
continuations, Duba et al. changed the domain equations yet again, also foregoing the tools
developed by Milner and Damas. They used a separate argument to establish strong sound-
ness. In introducing references to an operational formulation of the functional language,
Tofte changed the form of judgments obtained by the semantics, and used the technique of
co-induction to establish a proof. For continuations in a structural operational semantics,
Duba et al. completely altered the semantics,® again changing the structure of the proof
dramatically.

Fach of the above proofs considers a language with a single extension to a functional
core. It is natural to ask whether two extensions can be merged, such that a natural union
of the two type systems is sound. However, since each of the proofs involves a different
technique, it is generally impossible to merge the proofs. Tofte’s proof for references and
Duba et al.’s proof for continuations give no direct assurance that STANDARD ML’s type
system is sound, even if the other features of STANDARD ML are ignored.

3 A Syntactic Approach to Proving Type Soundness

Our approach to type soundness is based upon an operational formulation of a language’s
semantics by rewriting. Each intermediate state of an evaluation of a program is itself
a program, and the evaluation of a program is performed by successive reductions into a
new state: e; — ey — ... Reduction may either continue forever (ef), or may reach a
final state where no further evaluation is possible: e; —» e and e; —~ ex41. Such a final
state represents either an answer or a type error. Thus, proving type soundness reduces to
proving that well-typed programs yield only well-typed answers.

Programming language calculi, like the A-calculus, are the natural choice to specify
the semantics of a language such that each intermediate step of evaluation is a program.
Plotkin [26] shows how the semantics of a prototypical functional language relates to the
A-calculus. The A-calculi extensions for state [12, 14] extend this strategy to languages with
references and similar constructs. Likewise, the control calculi [13, 14] can be adapted to
address non-local control facilities such as exceptions and first-class continuations.

Since the intermediate states of evaluation are programs, we may apply the type system
to deduce a type for each state. Our strategy for proving type soundness rests upon two
fundamental observations about the types of states. The first observation is that each
intermediate state may be assigned the same type as the original program, ¢.e., reductions
preserve type:

?Furthermore, they take this as “evidence that the addition of [continuations] to Standard ML would be
a substantial change, rather than an incremental modification, to the language” [8: page 170]. However, we
believe that this only indicates a problem with their semantic framework.

Syntactic Type Soundness 9

if >e1:7 and e; — ey then > ey : 7T,

In combinatory logic, this property is known as subject reduction [4].

The second observation is that sound type systems do not assign a type to irreducible
expressions that are the sources of type errors, such as 1 + true. Furthermore, any ex-
pression containing such a subexpression is untypable; we call expressions containing such
irreducible subexpressions faulty:

if e is faulty, there is no 7 such that v e: 7.

Together, these two observations imply that all final states that can be reached from a
well-typed program are well-typed answers. With a definition of eval that takes faulty
expressions to WRONG, the type system is weakly sound.

As all answers produced are well-typed programs, subject reduction also establishes
strong soundness. To state that an answer v lies within the correct subset V7 of values, we
employ the type system itself:

veVTiff po:T.

This yields a soundness theorem based on a syntactic connection between answers and
types:

if >e:7 then either ef) or e—v and > v : 7.

Again, strong soundness follows with a definition of eval that takes faulty expressions to
WRONG.
In summary, proving a syntactic soundness theorem involves:

e demonstrating subject reduction,
o characterizing answers and faulty expressions, and
e showing that the faulty expressions are untypable.

The structure of the proof always remains the same, whether or not the language includes
some combination of references, exceptions, continuations, or other features.

3.1 Related Work

Curry and Feys [4] introduced the notion of subject reduction for combinatory logic. In the
language of combinatory logic, the CL-term e of a deduction concluding > e : 7 is called
the subject, and the type 7 is called the predicate. Subject reduction states that reduction
of the subject of a deduction preserves the predicate. Subject reduction holds for terms in
CL and the A-calculus [33].

Mitchell and Plotkin [25] present a type preservation theorem, i.e., subject reduction,
for a variant of the second order polymorphic A-calculus. This language has explicitly typed
declarations; the proof of type preservation is significantly simpler in the presence of such
declarations. They do not develop a type soundness theorem.

Abadi et al. [1] give a proof of soundness for type dynamic with respect to a structural
operational semantics, in addition to their denotationally based proof. In their structural

Syntactic Type Soundness 10

operational semantics, substitutions are carried out immediately: A-expressions evaluate to
themselves, rather than closures, and judgments do not contain an environment component.
Since answers are syntactic values, the type system can be applied to answers to show that
evaluation preserves typing. Although this proof is similar to our proof of subject reduc-
tion, its extension to references or continuations apparently involves the same difficulties as
Tofte’s and Duba et al.’s proofs.

3.2 Road Map

The next three sections illustrate our approach by proving soundness for several languages.
Section 4 considers a functional language, similar to that considered by Milner [20]. Section 5
considers an extension to references, an extension to exceptions, and shows how the results
may be merged to consider a language with both. To our knowledge, this is the first proof
of soundness for exceptions. Section 6 illustrates soundness for an extension providing first-
class continuations, and is the first proof of strong type soundness for continuations in a
polymorphic language. We conclude with a discussion of our technique, and suggestions for
its application to other languages.

4 Functional ML

Functional ML is an applicative language with constants, call-by-value higher-order func-
tions, and a Hindley/Milner-style polymorphic type system. A natural basis for a calculus
of Functional ML is Plotkin’s untyped Ay-calculus [26].

Let Var be a denumerable set of variables and Const be a set of constants. The expres-
stons and values of Functional ML are:

(Fzpressions) e=1v|ey ey|let z be ey in ey

(Values) vu=claz|Y]|Az.e

where z € Var and ¢ € Const. The free variables, F'V(e), and bound variables of an
expression are defined as usual, with A- and let-expressions binding their variables. The
let-expression binds z in e; but not ey, i.e., let bindings are not recursive. The fixed-
point combinator Y provides recursion. Following Barendregt [2], we adopt the convention
that bound variables are always distinct from free variables in distinct expressions, and
we identify expressions that differ only by a consistent renaming of the bound variables.
ClosedVal is the set of values with no free variables.

4.1 Semantics

The calculus for Functional ML is based upon four relations, called notions of reduction:

(6) cv — 6(c,v) if 8(¢,v)is defined
(5v) (Az.e) v — e[z +— 1]

(let) let 2 be v ine — e[z +— v]

(Y) Yo — v (Ax.(Yv)a)

Syntactic Type Soundness 11

To abstract from the precise set of constants, we only assume the existence of a partial
function:

6 : Const x ClosedVal — ClosedVal

that interprets the application of functional constants to closed values and yields closed
values. The 3, and let reductions use substitution: the notation e[z +— v] means the
substitution of v for free occurrences of x in e, renaming bound variables of v as necessary
to avoid capture. The Y reduction introduces an abstraction around (Y v) as v must be
applied to a value (z does not appear free in v by the variable conventions).

We refer to the union of these relations as v, or simply — when there is no danger
of confusion. The notion of reduction v gives rise to a system of reductions, —». The
relation — is the reflexive, transitive, and compatible closure of ——:

€1 — €2 €1 —» €y €3 —» €3 €1 —> €2

(H}) €1 —» €9 a—ra €1 —» €3 0[61] — 6[62]

where

Cu=[]|CeleC|letzbeCine|letz beeinC|Az.C.

A context C' is an expression with one subexpression replaced by a hole, denoted [|]. The
expression C'[e] results from placing an expression e in the hole of C'; this operation may
involve capture of the free variables of e by C'. An equational system may be constructed
as the congruence closure of v, but plays no role for our work.

With an appropriate choice of §, the calculus satisfies Church-Rosser and Standard-
ization properties; the proofs are variants of Plotkin’s proofs for the Ay-calculus [26]. By
Standardization, we know that an expression reduces to a value precisely if a reduction of
leftmost-outermost redexes outside of abstractions leads to a value. Based on this idea, we
can use the calculus to define an evaluation function [11]. Let —— be the relation:

(—) Ele] — E[e] iff e —¢

where
E:=][]|Ee|v E]|letzbeFine.

The special contexts F are evaluation contexts: they ensure that the leftmost-outermost
reduction is the only applicable reduction in the entire program. Evaluating from left to
right in an application is consistent with STANDARD ML. Unlike with C' contexts, there is
no possibility of capture when placing an expression in the hole of an evaluation context,
because the hole cannot appear inside a binding construct. Let —— be the reflexive and
transitive closure of ——. Then the partial function eval is defined for closed expressions e
as:

(eval) eval(e) =v iff e—w.

It is easy to see that the decomposition of a program into a v-redex and an evaluation
context is unique. It follows that the stepping relation (—) is a function, and therefore
that eval is a function, too.

Syntactic Type Soundness 12

4.2 Typing

The type system is a deductive proof system that assigns types to expressions. The types
of Functional ML are:

(Types) Tu=u | |a|lnn =1

where ¢1, ..., ¢, are ground types for basic constants (int, bool, real, etc.), and o ranges over
a denumerable set of type variables. Type variables stand for some fixed but unknown type.
Function types, , — 72, are right associative.

The polymorphic type system allows certain variables to be used with a set of different
types. For example, if the identity function Az.x is let-bound to the variable f, then f may
used as a function of type int — int and applied to values of type int, or f may be used as
a function of type bool — bool and applied to values of type bool. Type schemes represent
such sets of types (a* means zero or more distinct type variables):

(TypeSchemes) o u=Va'.T

The free type variables FT'V(c) of a type or type scheme are defined as usual, where
Yaj ...a,.7 binds a; through a, in 7. We identify type schemes that differ only by a
consistent renaming of bound type variables, or by a reordering of the binding occurrences.
We also identify V.7 with 7, so types may be regarded as type schemes with no bound type
variables.

A type scheme Yay ...a,.7 represents the set of types that may be obtained from 7 by
substituting for ey through «,. This is formalized by the notion of generalization: a type
scheme o generalizes a type 7, written o > 7, if there is a substitution for the bound variables
of o yielding 7. A substitution S is a (partial) function from type variables to types. A
substitution may be applied to a type in the obvious way; we write S7. Substitution on
type schemes respects bound type variables and is capture-avoiding. Generalization of a
type is defined as:

(>) Vaj ...an. 7 =7 iff S7/ =7 and Dom(S) = {e1,...,a,} for some 5.
Generalization is extended to type schemes:
(>) o> o' iff whenever ¢’ > 7 then o > 7.

Some examples are:

T = T
Ya.a — a = int — int
Yoajay.ap — ay = int — bool
YVao.a —a = a3 — ay

Vajas.ap — ag = Vaj.ap — asg

Generalization is a partial order on type schemes.

In order to assign types to open expressions, assumptions about the types of free vari-
ables are provided by type environments, denoted I'. Type environments are finite maps
from variables to type schemes. The free type variables FTV(I') of a type environment

Syntactic Type Soundness 13

(var) Foae:7 if T(x)>r1

(const) Toc:7 if TypeOf(c) » T

(Y) leY:((m—m) =1 —m) =T — T

(abs) Tlza—7]re:m

I'vdee:mm — 1

IF'vey:mp—mm IPbey:m

(app) IF'beleg:im

(let) I'be;:m Tz Close(r,T)]pey:m

I'let z be e; ines: 7

Close(r,T) =Vai...an.7 where {ay,...,an} = FTV(r)\ FTV(T)

Figure 1: Typing rules for Functional ML

are the free type variables of the type schemes in its range. For stating and proving var-
ious lemmas, it is convenient to define substitution on type environments pointwise, i.e.,
SH(z1,01), ..., (2n,00)}) = {{z1,501), ..., (xn, Son) }.

The function TypeOf : Consl — TypeSchemes associates a type scheme with every
constant. Since we have not precisely specified the set of constants, Functional ML is really
a class of languages parameterized by the set Const and the functions é and TypeOf. Just as
the Standardization and Church-Rosser properties restrict the admissible set of § functions,
a particular choice of Const, §, and TypeOf must satisfy a typability condition for type
soundness to hold. For every ¢, 7, 7/, and v,

if TypeOf(c) > 1" — 7 and >v: 7/,

(8-typability) then 6(¢,v) is defined and © é(c¢,v): 7.

This condition requires that é be defined for all constants of functional type and arguments
of matching type, and restricts the set of results that 6 may produce. This rules out, for
the moment, functional constants such as division that are not defined on all values of their
input type.

A type judgment I' > e : 7 for e an expression of Functional ML is the conclusion of a
deduction constructed according to the inference rules in Figure 1. The judgment I' > e : 7
is read “in type environment I', expression e has type 7”7. If the type environment in a
judgment is empty, we write > e : 7. An expression e is a well-typed program if it is closed
and there is a judgment > e : 7.

In this formulation of the typing rules, only one rule is applicable to an expression. Hence
if there is a deduction assigning an expression a specific type, that deduction is unique. This
permits proofs by induction on the structure of a deduction for a type judgment to proceed
by case analysis on the structure of the expression of the type judgment.

This type system has the important property that there is an algorithm W to determine
whether an expression has a type [20]. Given a type environment and an expression, the
algorithm computes a substitution and a type. The algorithm is sound [20] with respect to

Syntactic Type Soundness 14

the type system, meaning that it infers only valid typings.
Theorem (Soundness of W) [Milner| If (5,7) = W(L',e) succeeds then SI've: 7.

The algorithm is also complete [5], meaning that if an expression has a valid typing, then
the algorithm will find a typing. Furthermore, the algorithm always terminates.

Theorem (Completeness of W) [Damas, Milner] If S1I'>e: 1 then (5,7) = W(I',e
succeeds and there exists S' such that S'(ST) = S1T and S'Close(r,ST) » . If W(T,e

does not succeed, then it stops with fail.

— N’

Proving completeness involves demonstrating that if an expression has a type, then it has
a principal type, of which all others are substitution instances.

Theorem (Principal Typing) If ' > e : 7y then there exists T such that T' > e : 7 and
whenever I' > e : 73 then Close(t,I') > 15. The type T is principal for e in T

The existence of a sound and complete algorithm establishes the decidability of the type
system. However, this is solely a property of the type system, and says nothing about the
relation of the type system to the semantics of the language.

4.3 Type Soundness

Our proof of type soundness rests upon the notion of subject reduction [4]. The subject
reduction property states that reductions preserve the type of expressions. Lemma 4.3
below extends subject reduction to Functional ML.

Subject reduction by itself is not suflicient for type soundness. In addition, we must
prove that programs containing type errors are not typable. Put differently, if an expression
e is irreducible due to some type error, say (/ 1 0), then the type system should not be able
to assign a type to the expression. Otherwise, a well-typed program could reduce to such
an expression without violating subject reduction, and still cause a type error to occur. We
call such expressions with type errors faulty expressions and prove that faulty expressions
cannot be typed.

Some obvious facts about deductions that we use with no more ado are:

(i) if T'> Cle] : 7 then there exist I” and 7’ such that I" o e : 7/;

(ii) if there are no I, 7" such that I” > e : 7/, then there are no I', 7 such that T' > Cle] : 7.

These follow from the facts that (1) there is exactly one inference rule for each expression
form, and (2) each inference rule requires a proof for each subexpression of the expression
in its conclusion. Several facts about generalization follow from the definition of Close:

(i) if o' > o then Close(m,I'[z — o']) > Close(ry,I'[z — 0o]);

(it) if 2 ¢ Dom(I') then Close(ry,I') > Close(r,I'[z — o]).

The following lemma states that extra variables in the type environment I' of a judgment
I'> e : 7 that are not free in the expression e may be ignored.

Syntactic Type Soundness 15

Lemma 4.1 If I'(z) = I'(z) for all x € FV(e), then I've:7 iff I"ve:T.

A key lemma that we use in the proof of Subject Reduction for Functional ML and its
extensions is the Replacement Lemma, adapted from Hindley and Seldin [16: page 181].
This allows the replacement of one of the subexpressions of a typable expression with another
subexpression of the same type, without disturbing the type of the overall expression.

Lemma 4.2 (Replacement) If:

(i) D is a deduction concluding I' > Cleq] : 7,

(ii) Dy is a subdeduction of D concluding I v ey : 7/,

(iit) Dy occurs in D in the position corresponding to the hole ([]) in C', and
(iv) I">eg: 7/,

then I'> Cleg] @ 7.

Proof. We think of deductions as trees with the conclusion at the root. Let D, be the
deduction concluding I' > ey : 7. Cut the subtree Dy out of D and replace it with Dj.
Replace all relevant occurrences of e; in the resulting tree with e;. Then the resulting tree
is a valid deduction concluding T' > C[eg] : 7, as may be shown by induction on the height

of the tree [16: page 181]. [

Subject reduction for Functional ML states that the reductions of v preserve type.
Main Lemma 4.3 (Subject Reduction) If I'b ey : 7 and e — ey then I'> ey : 7.

Proof. The proof proceeds by case analysis according to the reduction e; — ej.

Case c v — 6(c,v). Then I'v ¢ : 7" — 7 and I' > v : 7/ follow from I' > ¢ v : 7 by app.
Hence I' > §(c,v) : 7 by the é-typability condition.

Case (Az.e) v — e[z — v]. From ' (Az.e)v:Twehavel'pv:7m' and ' Aze: 7/ — 7
by app. From the latter, I'[z — 7'] > e : 7 follows by abs. Hence T' » e[z — v] : 7 by
Lemma 4.4.

Case let t bevine — e[z — v]. From I' o let z bevine : 7 we have I' o v : 7/

and I'[z — Close(t',T)] > e : 7 by let. As Close(r',I') = Va;...a,.7" where
{ai,...,a,} = FTV(r")\ FTV(T), we have I' > e[z +— v] : 7 by Lemma 4.4.

CaseY v — v (Az.(Ywv)z). FromI'>Y v: 7, where 7 =17 — 72, by Y and app

(1) F'vov:(r —m)—1m — 7.

Then from I'> Y v : 7,

IMz—7n]eYo:im -1 by Lemma 4.1,
Iz —m]e(Yv)z:m by app,
FeXxe(Yv)z:m — 7 by abs,

F'eov(Az.(Yv)z):my — 7 by app with (1).

Syntactic Type Soundness 16

This completes the essence of the proof. It remains to establish several lemmas. |

A Substitution Lemma is the key to showing type preservation for reductions involving
substitution.

Lemma 4.4 (Substitution) If I'|lz — Va;...a,.7]>e: 7 and 2 ¢ Dom(I') and I'v v : 7
and {ay,...,a,}NFTV(L) =0 then I' > e[z — v] : 7.

Proof. We proceed by induction on the length of the proof of I'[z +— Vay ...a,.7]>e: 7/,
and case analysis on the last step.

Case ¢ = ¢. Then TypeOf(c¢) » 7' by const, and thus I' > ¢ : 7/ by const. Then
I'> ¢[z — v] : 7" since ¢[z — v] = c.

Case e = 2/. If ' # z, then T'z’ > 7' by var, and T » 2’ : 7/ again by var. Hence
I'> 2’|z — v]: 7/ since 2’|z — v] = 2'.

If ' = z, then by var

[z —VYay...a,.7)(z) = 7

. !
e Yoaq ..., T > T,

i.e. we can find a substitution S with domain {ay,...,a,} such that S7 = 7’. Next,

we have ST > v : S7 by Lemma 4.5 since I' > v : 7, and therefore ST v v : 7/. But

Dom(S) N FTV(T)=0,s0 ST =T. Also [z — v] = v, hence I' > z[z — v] : 7.
Case e = Az'.e;. By abs, it follows from the assumption I'[z — Vay ...a,.7] > Az'.eq : 7/

that 7/ = 71 — 7, and

Iz —Vay...a,.7][z' — 1]ve i1
ie. U[z' — m]lz — Vay...a,.7] > eg : 7.

Choose a substitution S : {ay,...,a,} — {of,...,al} such that of,...,af,
ay,...,0p, and FTV(I') are all distinct. Then

(2) [z’ — S7i]lz —Vay...a,.7|> e : S by Lemma 4.5,
(3) [z’ — Srleo:T by Lemma 4.1, and
(4) FTV(T[z' = Sna])n{al,...,a,} =10 by the choice of S.
Thus, I'[z’ — S| > e1[z — v] : S72 by the inductive hypothesis with (2), (3), and
(4). Since S is a bijection, S~ exists, hence

STHT[2" +— ST]) b ey[z — 0] : STH(STy) by Lemma 4.5,

ie. [z’ — 1] > eq[z — v] : 7.

But then

o Aa'efr —v]:im —m by abs,
ie. ['o (Az'eq)[z — v] i1y — 7.

Syntactic Type Soundness

Case e = (€1 €3). From I'[z — Va;...a,.7] > (€1 €2) : 7’ by the first premise of app

Iz —Vay...a,.7|ve i — 7
(5) Fvefz—ov]:im — 7 by ind. hyp.

By the second premise of app

Iz —Vay...a,.T|pey: 7
(6) I'>eglz —v]:m by ind. hyp.

Then by app with (5) and (6)

o (er[z — v] exlz — v]) : 7

ie. D> (eg ex)[z—v]: 7.

Case ¢ = let 2’ be €1 in e3. By the first premise of let

Iz —Vay...a,.7|>e i1
(7) I'vefz—v]:im by ind. hyp.

By the second premise of let

Iz — Vay ...a,.7][z" — Close(1, Tz — Vay ...a,.7])]| > ey : 7'

(8) i.e. D[z’ — Close(r, |z — Yay ...a,.7]))][z — Yai ...a,.T] > ey : 7',

SinceI'vv:T
(9) [z’ — Close(r1, [z — Yay...a,.7T])]pv:T by Lemma 4.1.
Now

{a1,...,a,} N FTV(T[2" — Close(r1, [z — Yoy . ..a,.7])])
CHag, ..., } N (FTV(L)U FTV(Close(r, [z — Vay ...0y,.7])))
={aq,...,a,} N FTV(Close(r, [z — Yoy ...0,.7T]))
={ay,...,a) N(FTV () \ (FTV(r)\ FTV(I[z — Vay ...0,.7])))
={oq,...,a,) NFTV ()N FTV(I'[e¢ — Yoy ...a,.7])
CHag,..., o,) N(FTV(T)UFTV(Voy ...a,.T))
={aq,...,a,} N FTV(NVoy...a,.7)
={oq,...,a,) N(FTV(T)\{a1,...,a,})

so by the inductive hypothesis with (8) and (9)

[z’ — Close(ry, [z — Yay ...a,.7])] > €3]z — 0] : 7/

!/

[z’ — Close(r,T)] > eglz — 0] : T by Lemma 4.6,
I'>let 2’ be vi[z — v] in exz — v] i 7 by let with (7),

i.e. T'> (let 2’ be vy in ey)[z — v]: 7.

Lemma 4.5 establishes that typing is stable under substitution.

Syntactic Type Soundness 18

Lemma 4.5 If I've: 7 and S is a substitution then ST >e: ST.

Proof. The proof proceeds by induction on the length of the proof of I' > e : 7 and case
analysis on the last step. The proof is an adaptation of Tofte’s proof of a similar lemma [37:
lemma 4.2]. [

Finally, Lemma 4.6 shows that generalizing the type of a variable in the type environment
has no impact on the conclusion of a deduction.

Lemma 4.6 If I'[zx — o]>e:7 and ¢’ > o then I'[z — o'|>e:T.

Proof. The proof proceeds by induction on the length of the proof of I'[z — o] > e : 7 and
case analysis on the last step. The proof is an adaptation of Damas and Milner’s proof of
a similar lemma [5: lemma 1]. The only interesting case is the case for let-expressions.

Case e = let 2’ be €1 in e5. By the first premise of let

[z—o]lre
(10) [z —o]ve:m by ind. hyp.

By the second premise of let

Iz — o]z’ — Close(r1, [z — o])] > €3 :
[z — o'|[z’ — Close(r, [z — o])] > e3: 7 by ind. hyp.
(11) I'[z — o'][z’ — Close(ry,T'[z +— 0'])] > ey : 7 by ind. hyp.

Then I'[z — o] o let 2’ be €1 in ez : 7 by let with (10) and (11).]
A corollary of Subject Reduction is that standard reduction steps preserve type.
Corollary 4.7 If 'b ey : 7 and e;—» ey then 'beg 1 7.

Proof. First, if e; — ey then e; = Ele] and e; = Ele'] and e — €', so I' > e5 : 7 by the
Replacement Lemma. Then the result follows by induction on the length of the reduction
sequence e —» es. |

Subject reduction ensures that if we start with a typable expression, we cannot reach
an untypable expression through any sequence of reductions. This by itself, however, does
not yield type soundness. Subject reduction simply ensures that any properties implied by
typability are preserved by reduction. The critical property we seek is that evaluation of a
typable expression cannot get stuck.

Definition 4.8 (Stuck Expressions) The evaluation of an expression e is stuck if e is
not a value and there is no €' such that e — €.

Of course, whether an expression eventually reduces to a stuck expression is not a
decidable property. We approximate the set of expressions that become stuck with a set of
faulty expressions.

Syntactic Type Soundness 19

Definition 4.9 (Faulty Expressions) The faulty ezpressions of Functional ML are the
expressions containing a subexpression (¢ v) where §(c,v) is undefined.

The idea is that any faulty expression may become stuck, i.e., the property “reduces to
a faulty expression” is a conservative approximation to “reduces to an expression that is
stuck”. Thus the faulty expressions are a superset of the stuck expressions. For example,
the expression ((Ay.2) (Ax.+ 1 true)) is faulty because of the subexpression (4 1 true), but
is not stuck because it reduces to 2.

The behavior of evaluation is summarized by the following lemma. Let e f mean that e
diverges, i.e., e — €’ for some €', and for all €’ such that e — €', there exists ¢’ such that

6/ N 6// .

Lemma 4.10 (Uniform Evaluation) For closed e, if there is no €' such that e — ¢’ and
e’ is faully, then either et or e — v.

Proof. By induction on the length of the reduction sequence, we need only show that either
e is faulty, e — €’ and €’ is closed, or ¢ is a value. From the definition of ——, ¢ —— ¢’ iff
e = Eleq], ¢ = Ele!], and e — €. (Recall that £ =:=[]| Ee|v E|let 2 be E ine.) We
proceed by induction on the structure of e.

Case e =¢, Y, or Az.e. Then e is a value.
Case e = z. Since e is closed, this case cannot occur.

Case ¢ = let z be €1 in e5. By the inductive hypothesis with ey, there are three cases to
consider. If ey is faulty, then let z be e in ey is faulty. If e = Fy[e’] and ¢’ — €
then e = F[e'] where E = let z be Fj in ey; thus e — FEl[e”]. Otherwise, if e; is a
value, then let z be €1 in e3 — e[z — €4].

Case e = (€1 €3). By the inductive hypothesis with ey, there are three cases to consider.
If ey is faulty, then (eq ey) is faulty. If e; = Ey[¢/] and ¢/ — €” then e = E[e’] where
E = (F; ey); thus e — FE[e"]. Otherwise, e; is a value. By the inductive hypothesis
with ey, there are three subcases to consider. If ey is faulty, then (e; ez) is faulty.
If e = E3[€’] and € — €’ then e = Ele’'] where E = (e; E3); thus e — E[e"].
Otherwise, both e; and e; are values, and the possibilities can be summarized as

follows: .
e ? c Az.e Y x
c —— 0or —— 0or > 0or ><
faulty faulty faulty
AT.€ — — — X
Y — — — X
T X X X X

Cases marked with X cannot occur because the expression is not closed. Cases marked
with — indicate that the combination reduces with £ = []. [

To relate faulty expressions and typability, we show that no faulty expression is typable.

Syntactic Type Soundness 20

Main Lemma 4.11 (Faulty Expressions are Untypable) If e is faulty, there are no
I',7 such that I'>e: 7.

Proof. It suffices to show that the subexpressions of e that cause e to be faulty are unty-
pable. In general, we proceed by case analysis according to the form of the subexpression,
but for Functional ML there is only one case.

Suppose (¢ v) is faulty and T > c v : 7. By app, '>¢: 7' — 7 and I'> v : 7. Then by
the é-typability condition, 6(c,v) is defined, but this contradicts the assumption that (¢ v)
is faulty. |

Since the faulty expressions are untypable and we have type preservation, the property
“does not reduce to a faulty expression” is implied by typability.

Theorem 4.12 (Syntactic Soundness) If > e : 7 then either eft or e— v and > v : 1.

Proof. By Uniform Evaluation, either e — ¢’ and €’ is faulty, or ef, or e—v. Since
> e : 7, Subject Reduction implies > v : 7 and > €’ : 7. Suppose e— ¢’ and €' is faulty.
Since faulty expressions are untypable, > €’ : 7 is a contradiction, therefore this case cannot
occur. Hence either eft or e—» v and > v : T.]

To state strong and weak soundness theorems, we must have a definition of evaluation
that differentiates between programs that diverge and those that cause type errors. Let
answers (a) be values or the special result WRONG, and define eval’ as:

(eval) eval'(e) =

WRONG if e— ¢’ and €’ is faulty;
v if e—w.

Programs that cause a type error return the special answer WRONG. Strong and weak
soundness are now corollaries of Syntactic Soundness.

Theorem 4.13 (Strong Soundness) If > e: 7 and eval'(e) = a then v a : 7.

Theorem 4.14 (Weak soundness) If >e: 7 then eval’(e) # WRONG.

5 References and Exceptions

Besides functional facilities, first-class references and exceptions are the most important
core programming facilities of STANDARD ML and similar languages. In this section we
consider several extensions to Functional ML. The first subsection deals with Reference
ML, an extension of Functional ML with references. It uses our previous work on a calculus
of state, Ay-S [12, 14], and in particular its cell-oriented variant [3]. The second subsection
addresses Exception ML, an extension of Functional ML with exceptions. It uses a modified
version of our control calculus, A,-C [13, 14], especially its fragment with prompts [9]. The
final subsection presents Core ML, which includes both references and exceptions.

*Type preservation by itself does not gnarantee type soundness. Consider the (trivial) type system where
every type is a subtype of every other type. Type preservation holds since every expression can be assigned
every type. However, the system does not prevent type errors, because it rejects no expressions.

Syntactic Type Soundness 21

5.1 Reference ML

Extending the Ay-calculus to a calculus of functions and references requires extending the
syntax with a new kind of expression and several new values (underlined):

(Fzpressions) e=1v|e ey|let z beeginey|pbe
(Values) vu=cla|Y|Aze|ref|!l]|:=]:=w
0= {{(z,v) }"
The expression p(z1,v1)...(z,,v,).€ binds z1,...,2, in v1,...,v, and e. Above, 0 repre-

sents a finite function from variables to values, i.e., we treat 6 as a set of pairs whose first
components are distinct. We also identify all p-expressions that differ only by a consistent
renaming of bound variables.

The values ref, !, and := are the familiar operations of ML.?> The application of ref to
a value creates a reference cell containing that value. The application of ! to a cell returns
the value contained in that cell. The binary assignment operator := evaluates both its
operands, the first of which must evaluate to a cell, and assigns the value of the second
operand to that cell. Since all operations are curried, the application of the assignment
operator to a variable is a value. Specifically, the expression (:= ¢) may be thought of as
a capability to assign to the cell ¢. The p-expression is semantically an abbreviation of a
let-expression:

plx1,01) .. Ty, vn).€

= let z; be ref 4y in

let x,, be ref u, in
(/\yl e YnYna- ?/n-l—l) (:: T1 1)1) .. ‘(:: Tn vn) e

where uq, ..., u, are arbitrary values (of the right type). In order to simplify the semantics,
we do not treat it as such [14]. Intuitively, a p-expression plays the réle of a store fragment
during the reduction of a program with imperative assignment statements. A reference cell
is represented as a variable; the pair (z,v) in a p-expression indicates that reference cell z
contains value v.

5.1.1 Semantics

In addition to the reductions for v, the reductions for references are:®
(ref) ref v — p(z,v).x
(deref) pd{z,v).R[!] — pb(z,v).R[v]
(assign) pO(x,v1).R[:= x v3] — pb(z,v2).R[vq]
(Pmerge) pb1.p05. — pb10;.e
(piift) R[pb.e] — pb.R[e] if R # []
®Introducing ref, |, and := as values rather than special forms like (ref ¢), (! ¢), and (:= e; e2) simplifies

the proofs of several lemmas that proceed by induction on the structure of expressions. The latter approach
requires duplicating much of the work of the case for applications.

This semantics is due to Crank and Felleisen [3], which was derived from Felleisen and Hieb’s work [14].
A similar definition of evaluation for dealing with state using rewriting techniques also appears in the work
of Mason and Talcott [19].

Syntactic Type Soundness 22

By the variable conventions, z is not free in v in the ref reduction; the domains of #; and
0, are disjoint in py,epge; and the free variables of R are disjoint from the domain of € in
pife. We refer to the union of these five reductions as r. The notions of reduction r and v
(adapted mutatis mutandis to the full syntax) form the basis for a calculus of functions and
references. We refer to the union as vr, and write — for a reduction in vr. The extended
notion of reduction gives rise to a system of reductions and equations with the extension of
contexts to:

Cu=[]|CeleC|letzbeCine|letz beeinC|Ax.C|ph.C|pbz,C).e.

The calculus satisfies the same basic properties as the Ay-calculus [3].
The definition of r relies on a set of R contexts:

R:u=[]|Re|v R|letz be Rine.

The use of R contexts in the new reductions reflects the additional sequencing restrictions
that the introduction of side-effects in a programming language requires for the semantics
to be deterministic. In particular, the creation, the dereferencing, and the updating oper-
ations on a reference cell must be ordered in a linear fashion, which implies some further
ordering among the operations on distinct cells. The R contexts build this minimal order of
evaluation into those reductions that refer to reference cells and their operations; following
ML, we choose to perform operations from left to right.

For r reductions, a cell is represented by an ordinary variable appearing in the domain of
a store fragment . When a program creates a new cell via ref, the ref reduction introduces
a p-expression that records the cell’s current value. The dereference operator ! selects a
cell’s value from the closest p-expression (relative to R contexts). If the appropriate cell
is bound in a p-expression that is not the closest one, the intervening p-expressions must
first be merged with the outer one. This is accomplished with pyy and ppeqe reductions,
which lift a partial store out of R contexts, and merge it with outer stores (by the variable
convention, cells are renamed appropriately to avoid collisions). An assignment replaces a
cell’s current value in the closest p-expression, after performing all necessary lift and merge
steps, and returns the assigned value.

For example, consider the following expression:

((let x be ref (Ax.4 Ix 2) in := x (Ax.+ x 3))
(let x be ref 2 in (Az.x)(:=x 4)))

In this expression, the two assignments can happen in an arbitrary order, and the system of
reductions admits both possibilities. Both assignments, however, must happen before the
outermost application is reduced. Figure 2 gives one possible reduction sequence.

The above calculus only constrains the relative ordering of ref, deref, and assign reduc-
tions. By defining extended evaluation contexts:

Ex=]|Ee|vE]|letazbe Fine|pd.E

we fix the order in which reductions in v and ref, deref, and assign may be applied. The
stepping function = is defined as before. To show that —— is a function requires a simple

Syntactic Type Soundness 23

((let x be ref (Ax.+ !x 2) in := x (Ax.+ x 3))
(let x be ref 2 in (Az.x)(:= x 4)))

— (px, x4 x 2) = x (Ax+4 % 3)) (p(x,2).(Az.x)(:=x 4)) 2 X ref, pup, let
— (p{x, x4 x 3). Ax4+ x 3) (p{x,2).(Az.x)(:=x 4)) assign

— (p{x, x4+ x 3). x4+ x 3) (p(x,4).x) assign, Py

— p{x, x4 Ix 3Ny, 4).(Ax+ x 3) vy 2 X plift, Pmerge
— P A4 1x 3)(y,4) + ly 3 By

— p{x, Ax.+ x 3)(y,4).+ 43 deref

— p{x, x4+ Ix 3)(y, 4).7 6

Figure 2: Reducing a program with side-effects

diamond theorem, since the order in which pyy and py,epy. Teductions happen is not fixed,
and the context R in the py rtule is selected in a nondeterministic fashion. The answers
returned by evaluation of a program are no longer simply closed values, since an answer
may be a reference cell. Answers are values or p-expressions enclosing values:

(answers) a=v|pbo.
Based on these definitions, evaluation may be defined like before:

(evalyy) evalyp(e) =a iff e — a

5.1.2 Typing

Typing reference cells in the presence of polymorphism is not straightforward, as the obvious
solution is unsound [6, 36, 37]. To assign types to reference cells, we extend the set of types
with an additional constructor:

T:::L1|...|Ln|a|71_>72|ﬁ

The type 7 ref is the type of cells containing a value of type 7.
The obvious types for the three operators are indicated by their semantics:

I'oref:7— 7ref
I'e! 7ref —>71

I'si=:7ref -7 —71

For example, the first argument of the assignment operator (:=) must be a reference cell.
The second argument must be a value matching the type of the cell. The result is of the
same type as the second argument since our assignment operator returns the value assigned.
The following expression illustrates why this typing is unsound:

let f be ref (Ay.y) in
(Az. ! ftrue) ;=1 (An.+ 1 n))

Syntactic Type Soundness 24

If the type of the reference bound to x is generalized to Va.(aw — «) ref, then the reference
cell can be treated as having type (int — int) ref for the assignment, and as having type
(bool — bool)ref for the dereference, hence this expression is typable as bool. But evaluating
this expression leads to a type error:

let f be ref (Ay.y) in
(Az. ! ftrue) ;=1 (An.+ 1 n))
— let f be p(x, Ay.y). x in
(Az. ! ftrue) ;=1 (An.+ 1 n))

— p(x, Ayy).
(Az. ! x true) (:=x (An.+ 1 n))

— p(x,An.4+ 1 n). ! x true
— p(x,An.4+ 1 n). + 1 true

As Tofte [36, 37] points out, the problem with the obvious typing is the generalization of
type variables that appear free in the type of a value in the store.

The central idea of Tofte’s solution is to ensure that the only storable values are those
that will not be used polymorphically at run-time. To this end, type variables are parti-
tioned into tmperative and applicative variables: the former set of type variables is named
ImpTypeVar; the latter AppTypeVar. Types are classified accordingly: an imperative type
cannot contain any applicative type variables. Only values of imperative type can be stored.
When the type of a value is generalized in a let-expression, type variables that might appear
in the types of values in the store are required to be imperative, and are not generalized.

The notion of generalization requires appropriate adaptation. We still have:

(>) Vaj...a,. 7 =7 if S7" =7 and Dom(S) = {ay,...,a,} for some S,

but the substitution S is required to map imperative type variables to imperative types.
Thus, if o is an imperative type variable, we have:

Va.ao — a > int — int
and Ya.a —a > a—a
but not Va.a —a > a— «

since a is potentially applicative (the meta-variable «a still represents any type variable—
imperative or applicative).

Like all other techniques for typing references, Tofte’s system requires modifying the
typing rule for let-expressions. The let rule is split into two rules, according to whether or
not the right-hand side of the declaration is a value. Figure 3 gives the new rules. The
second rule does not generalize over imperative type variables, and thus will not generalize
the type of a value in the store. However, if the expression bound by a let-expression is a
value, as in the first rule, then its evaluation cannot create a new cell, so generalization of
imperative type variables in its type cannot generalize the type of a value in the store. Tofte
uses the terminology expansive and non-expansive to denote this syntactic classification of
expressions into those that may create new references, and those that definitely do not
create new references. Like Tofte, we classify only values as non-expansive, but a stronger
type system is possible by classifying more expressions as non-expansive [36, 37].

Syntactic Type Soundness 25

F'vv:m Tz~ Close(r,I)]pe:m

(let,)

I'pletzbevine: m

(let.) I'bep:m Tle— AppClose(r,T)| > es im0 e ¢ Values
€l,

I'>let 2 be e; ines: 7

Close(r,T) =Vai...an.7 where {ay,...,an} = FTV(r)\ FTV(T)
AppClose(t,T') =Vay ...an.7 where {ay,...,an} = (FTV(r)\ FTV(T)) N AppTypeVar.

Figure 3: Modified let-expression typing rules

(ref) Foref: 7 — 7ref if 7isimperative
(deref) Fol:rref =71
(assign) I =:(rref =17 —1)

Clay — 7 ref].. . [xn — T ref]pe: T
Clay — 7 ref] ... [xn — T ref] b v i1 7 is imperative 1 <i<n

h
(rho) o plzy,v1) ... (xn,vn)e:T

Figure 4: Additional typing rules for references

Figure 4 gives four additional typing rules for reference cells. The typing rules for ref
and p-expressions ensure that any value placed in the store has an imperative type. The
typing rules for ! and := do not need to be explicitly constrained, since their use is implicitly
constrained by the type of a value already in the store.

In addition to the restrictions placed on the typing of constants by Functional ML,
we also require that there be no constants of reference type (7 ref). This ensures that all
values of reference type are in fact reference cells, and can be assigned or dereferenced. This
restriction is used in the proof of Theorem 5.6.

The new system assigns the same types as the old one to Functional ML expressions.

Let g indicate provability in the old, functional system, and let & indicate provability in the
system with references.

Proposition 5.1 If e is an expression in Functional ML, and 1" and 7 are purely applica-
live, thenfge:r off Ibe:r.

Since Functional ML expressions do not contain ref or p-expressions, no imperative type

variables need be chosen to type an expression, and Close and AppClose yield the same
type scheme for applicative types.

5.1.3 Type Soundness for References

To prove type preservation for the extended language, we must show that the notion of
reduction v extended to the new syntax preserves types, and that the reductions of r

Syntactic Type Soundness 26

preserve types. Showing that the extended v preserves types amounts to re-proving the
various lemmas used in section 4.3 for the extended system. In general, we refer to the
extension of Lemma 4.n as Lemma 4.nT. Showing that r preserves types involves adding a
case for each reduction to the proof of Subject Reduction. The cases involving R contexts
use the fact that:

if I'> Rle]: 7 then I'>e: 7.

The type environment I is the same in both the antecedent and consequent since R contexts
do not bind variables.

Main Lemma 5.2 (Subject Reduction for vr) If U bep:T and ey % ey then
Ie ey T.

Proof. The cases for the reductions of v are the same as before, using an appropriately
extended Replacement Lemma and a similarly extended Lemma 4.1.

Case ref v — p(z,v).z. From T > ref v : 7, where 7 = 7/ ref and 7’ is imperative,
I'> v : 7 by ref and app, and I'lz — 7' ref] > v : 7 by Lemma 4.17. Since
Iz — 7' ref] > @ : 7' ref by var, I' o p(z,v).x : 7’ ref by rho.

In order to satisfy the imperative restriction on the typing of p-expressions, ref appli-
cations must yield values of imperative type, as ensured by ref.

Case pf(z,v).R[! z] — pb(z,v).R[v]. From I' > pf(z,v).R[! z] : 7 by rho
(12) IMso:r

where 7/ is imperative and Iz = 7'ref. Thus I'' > z : 7'ref, hence IV v ! z : 7/ by deref
and app. With (12) by the Replacement™ Lemma, we have I' > pf(z,v).R[v] : 7.

Case pf(z,v1).R[:= z vy] — pb(z,v;).R[vq]. From I' > pf({z,v1).R[:= z v3] : T by rho

(13) | S

where 7’ is imperative and IYz = 7/ ref. Thus I'' > z : 7/ ref, and by assign and app
si=az:7" =7
I'vi=zwvy:7 and TI'vowy:7 by app.

With (13) and using the Replacement® Lemma twice, we have I > pf(z,vy).R[vy] : 7.
Case pb;.pl3.e — pb16;.e. From I' > pby.pfy.e : T by rho
(14) "> phye:7 and 1" 7

where 61 = (z1,v1) .. . (@p,vp), IV = U'ley — 7 ref]. . [z, — T ref], and 1 < ¢ < n.
Again by rho

(15) IMee:r and T"v o7

where 0y = (a),v]) .. .(a], v), 1" = 1"[z} — rfref]...[a], — 7} ref],and 1 < j < m.

Since Dom(#;) N Dom(#;) = @ (by the variable conventions),

IMewv,:1; forl<i<n by (14),
' phi6z.e: 7 by rho with (15).

Syntactic Type Soundness 27

Case R[pf.e] — pb.R[e]. We have I' o R[pf.€] : 7, and proceed by induction on the
structure of R to show I' > pf.R[e] : 7.

Case R = [|. Then R[pf.¢] = p8.R]e].
Case R = (R' €'). Then I' > (R'[pf.€] €') : 7, and by app

(16) I'> R[pbe]:7" —1

(17) and I'v € : 7.

Then I' > p8.R'[e] : 7" — 7 by ind. hyp. with (16), and by rho

(18) [[z; — 7 ref]o v i 7y

(19) and T[z; — 7 ref] > R'le] : 7/ — 7

where 0 = (z1,v1)...(xp,v,) and 1 <4 < n. Since zq,...,z, ¢ FV(€),
Iz; — miref]oe 7 by Lemma 4.17 with (17),
[[z; — 7; ref] > R'[e] € : 7 by app with (19),
> pb.Re]e :T by rho with (18).

Case R = (v R'). Similar to the previous case.
Case R=let x be R in¢’. Then I' > let be R'[pf.e] in €' : 7, and by let.

(20) I'> R'[pb.e]: 7'

(21) and T'[z — AppClose(t',T)| > €' : 7.
Then I' > p8.R'[e] : 7/ by ind. hyp. with (20), and by rho
(22) [l — mref]o v 7

(23) and I'[z; — 7; ref] > R'le] : 7/

where 0 = (x1,v1)...(zp,v,) and each 7; is imperative for 1 < ¢ < n. Since
Ty .y & FV (),

I'[z — AppClose(r',T)|[x; — 7; ref] > €' : 7 by Lemma 4.17 with (21)
i.e. Uz — 7; ref][z — AppClose(7',T)] v € : 1.

But each 1; is tmperalive, due to the restriclion on the typing of p-expressions,

hence
AppClose(t',T') = AppClose(7',T[z; — 7; ref]).

If R'[e] is expansive, then
['[z; — 7; ref][z — AppClose(t',T[z; — 1iref])] v € : T
[[z; — 7; ref] > let be R'[e] ine : 7 by let. with (23)
I'> ph.let z be R'[e] ine : 7 by rho with (22).
Otherwise, R'[e] is non-expansive, and
[lz; — 7; ref][z — Close(t',x; — 7y ref])] v €' i 7
[[z; — 7; ref] > let be R'[e] ine : 7 by let, with (23)
I'c ph.let z be R'[e] ine : 7 by rho with (22).

Syntactic Type Soundness 28

Thus I' > pf.R[e] : 7 by induction. [

It remains to extend the proofs of the various lemmas. The only one that is not straight-
forward is the Substitution Lemma. As in the definition of generalization, substitutions 5
in the following proof are required to map imperative type variables to imperative types.

Lemma 5.3 (Substitution) If Tz —Vay...ap.7]be: 7 and z ¢ Dom(T) and
Iev:rand {oq,...,a,} N FTV(L) =0 then T' 5 e[z — v] : 7.

Proof. The cases from the proof for Functional ML are unchanged, with the exception that
the let-expression case applies only when the bound expression is a value. There is one new
case for expansive let-expressions, and new cases for the additional syntax.

Case e = ref, |, or :=. In each case, I > e : 7/ for any I”, hence I > e : 7/. Also in each

case, e[z — v] = e, s0 ' > e[z — v]: 7.

Case e = pf.e;. From I'[z — Vay ...a,.7] > pb.ey : 7’ by rho

Iz —VYay...an.7][z; — 7 ref] > v 07
and [z — Vay ...a,.7][z; — 7 ref] > ey 0 7/

where 0 = (z1,v1) ... (T, V), T1,...,Tm,« are distinct, and each 7; is imperative
for 1 < i < m. Choose a substitution S : {ay,...,a,} — {af,...,al} such that
af,...,al are distinct type variables, So; = af, and {a},...,a/,} N ({a1,...,a,} U

FITV(T)UFTV(r)Ul; FTV(7;)) = 0. Then by Lemma 4.5%

S(T'[z — Yoy ...an.7][z; — 7 ref]) b v; 0 STy
ie. 'z —Voq...0n.7][x; — ST 1ef] > 05 0 ST
i.e. T[z;— St;ref]lz — Yay ...a,.T] > v 0 ST;.

Also by Lemma 4.5T,
S(T[z — Yay ...a,.7][z; — 7 ref]) > ey : ST/

ie. [z — Vay...ap.7][z; — STiref] > e : ST/
ie. U[z;— S7iref][lz — Vaq...a,.7]> e : ST

By applying the inductive hypothesis to each,
[[z; — S7; ref] > vz — v]: Sy
and I'[z; — S7; ref] > er[a — v] : ST/,
Since S is a bijection, §~! exists; hence
[x; — 7 ref] o vi[az — v] 7
and ['[z; — 7; ref] > e[z — v] i 7',

!/

Then I' & pf[z — v].e1[z — v] : 7/ by rho, thus T' > (pf.e)[z — v] : 7',

Syntactic Type Soundness 29

Case ¢ = let 2’ be €7 in e; where e; ¢ Values. By the first premise of let,

Iz —Vay...a,.T|peg 17y
(24) I'vefz—ov]:m by ind. hyp.

By the second premise of let,

Iz — Vay...a,.7|[z" — AppClose(1, [z — Yay ...a,.7])] > eg : 7/
i.e. T[z’ — AppClose(r, Tz — Vai ...a,.7])|[z — Yai ...a,.7] > ez : 7',

Choose a substitution S : {a1,...,a,} N ImpTypeVar — {af,...,al,} such that
al,...,al are distinct imperative type variables, S is a bijection, and {of,...,al } N
(FTV(D)U FTV(T)U{ay,...,a,}) = 0. Then by Lemma 4.5%

S(T[z" — AppClose(ry, Tz — Yai ...a,.7])][z — Vai ...a,.7]) > ey : ST/
i.e. D[z’ — SAppClose(r1, Tz — Yoy ...a,.7])][z — Yoy ...a,.T]| > ey : 5T
(25) i.e. Tz’ — AppClose(ST1, Tz — Yoy ...an.7))][t — Vay ...a,.T]> ey : ST

since the domain of § contains only imperative type variables. From I' > v : 7 since
z’ is not free in v

(26) [z’ — AppClose(ST1, Tz — Yoy ...a,.7])] > v: T
Now,

{a1,...,a,} N FTV(T'[2' — AppClose(St, [z — Vai ...a,.7])])
{a1,...,a, } N (FTV(L)U FTV(AppClose(STy, L'z — Vay ...a,.7])))
{ay,...,a,} N FTV(AppClose(Sty,I'[z — Vay ...a,.7]))

{a1,..., 0, } N FTV(Vai . ..ol .57)

{a1,...,a, } N (FTV(ST)\{af,....all})

=0

where {of,...;all} = (FTV(S1)\ FTV(I[z — Vai...a,.7])) N AppTypeVar. By
the inductive hypothesis with (25) and (26), it follows that

1N

Iz’ — AppClose(St, Tz — Vay ...a,.7])] > esz — v]: ST
Since S is a bijection, $7! exists, so by Lemma 4.5

S™HI[z" — AppClose(St, [z — Yay ...a,.7])]) > e[z — v] : S71(ST)

i.e. L[z’ — AppClose(ry, Uz — Vay ...a,.7])] » e[z — v] : 7',

Then by Lemma 4.6

[z’ — AppClose(r1,T)] > exla — v] : 7/
and by let, with (24)
!

['vlet x be er[z — v] iney[z — v]: 7
i.e. [> (let z be €1 in ey)[z — v] : 7. [

Syntactic Type Soundness 30

The evaluation of an expression in Reference ML can become stuck for several new
reasons. The expanded definition of faulty expressions reflects this fact.

Definition 5.4 (Faulty Expressions) The faulty expressions of Reference ML are those
expressions containing a subexpression of the form:

¢ v) where §(c,v) is undefined;
l'v) where v ¢ Var;

:= v) where v ¢ Var; or
pO{z,v2).Clz v1].

AA/_\

As before, we have a Uniform Evaluation Lemma, stating that programs either yield an
answer, diverge, or reduce to a faulty expression.

Lemma 5.5 (Uniform Evaluation) For closed e, if there is no €' such that e ~— €' and
¢ is faully, then either eft or e = a.

Proof. The proof proceeds by induction on the length of the reduction sequence, and is
similar to the proof for Functional ML. |

All of the expressions in the expanded definition are untypable.

Main Lemma 5.6 (Faulty Expressions are Untypable) If e is faully, there are no I’
and T such that T & e : 7.

Proof. Again, it suffices to show that the subexpressions of e that cause e to be faulty
are untypable. We proceed by case analysis according to the form of the subexpression,
assuming for each case that the expression can be typed, and deriving a contradiction.

Case (¢ v) where §(¢,v) is undefined. As for Functional ML.

Case (! v) where v ¢ Var. Assume that I'>! v :7. Then I'> v : 7 ref by app and deref,
which implies v is a variable (since no other value can have type 7 ref), contrary to
the assumption.

Case (:= v) where v ¢ Var. Assume that I' > := v : 7. Then I' » v : 7’ ref where
7 = 7 — 7’ by app and assign, which implies v is a variable, contrary to the
assumption.

Case pf(z,v").C[z v]. Assume that ' > pf(z,v").C[z v] : 7. Then I v C[z v] : 7 by rho,
where I'(z) = 7" ref. Since I'' > z v : 75 where I"(z) = I"(2), I v 2 : 7y — 13 by
app, hence I'(z) » 71 — 75. This contradicts I'(z) = 7/ ref.]

Type soundness now follows as before.

Theorem 5.7 (Syntactic Soundness for Reference ML) If be:7 then either eft or

vr T
e—s aand>a:T.

Proof. Exactly as for Theorem 4.12, using the appropriately extended lemmas. |

Syntactic Type Soundness 31

5.2 Exception ML

Due to é-typability, constant functions must be defined for all values of their input type.
This precludes constants, such as integer or real division, that are defined on all but a few
recognizable input values of correct type. STANDARD ML solves this problem by introducing
exceptions.

Our exception extension provides named exceptions with parameters, a means of raising
exceptions, and a means of handling exceptions. Our extension thus includes three new
phrases:

exception z1 ...z, In €, raise e1 €, e3 handle e; e3.

The first phrase declares 1, ..., z, to be exception names lexically bound in e. The second
phrase requires e; to evaluate to an exception name, and raises that exception with a
parameter, the value of e;. The parameter propagates along with the exception, and is used
at the site where an exception is handled. The third phrase evaluates its subexpressions
e1 and ey first, and installs the value of e; as an exception handler for e; exceptions that
are raised during the evaluation of e3. The subexpression e; must evaluate to an exception
name, and ey must evaluate to a function that accepts parameters of e; exceptions. When
an exception is raised, control transfers to the dynamically closest handler for that kind of
exception. The handler function is applied to the exception parameter, and the result of
the application is returned as the result of the handle-phrase. If there is no active handler
for a raised exception, evaluation terminates with an “unhandled exception” answer.
To extend Functional ML with exceptions, we add several new phrases to the syntax:

(Fzpressions) e = v |ey ey |let z be ey in ey | exception y in e
(Values) viu=cl|az|Y]|Az.e|raise | e handle | raise v | e handle v
X =zt

In the expression exception x in e, the variables in y are bound in e. We treat y as a
set of variables, and call these exception names. As raise is a curried binary operator, the
application of raise to a value is a value, and is included in the syntactic class of values (like
:= in Reference ML). Likewise, the expression e handle is a value, and receives an exception
name and handler function by ordinary application. Hence the application of e handle to a
value is also a value.

5.2.1 Semantics

Raising and handling exceptions requires several new reductions:

(raise) Ulraise z v] — raise z v if U # []
(handle) (raise z v1) handle z v — vy vy
. exception xx1xy in ___ exception 123 in
(reraise) X|[(raise z1 v1) handle z3 vg] - Xraise z1 vq] v1# T2
(unhandle) v1 handle z vy — v

These new notions of reduction again rely on (two different kinds of) contexts for the
enforcement of a specific order of evaluation for applications in connection with the raising

Syntactic Type Soundness 32

and handling of exceptions:

(raising) Uz=]]|Ue|lvU]|letzbelUine
(handling) X =[|Xe|vX]|letz be X ine| X handle z v.

When an exception is raised, raise reductions propagate the exception outwards, eliminat-
ing pending computations. As U contexts do not include the phrase U handle z v, raise
reductions propagate the exception only to the closest exception handler. If the closest han-
dler matches the raised exception, a handle reduction applies the handler function to the
exception parameter. If the handler does not match the exception, a reraise reduction dis-
cards the handler, and the exception may continue to propagate by raise reductions. Should
an expression protected by a handler evaluate to a value without raising an exception, the
unhandle reduction discards the handler.

The exception-expression requires two additional reductions, similar to those for p-
expressions:”

(€xnyey:) exception i in exception y; in e — exception x1X2 in e
(exnif) X [exception x in e] — exception x in X[e] if X #]

Indeed, the only difference is that the exception-expression does not bind any values to its
variables. The purpose of an exception-expression is to distinguish different exceptions in
the reraise reduction, in order that evaluation be deterministic. If 1 and x5 are different
but only A- or let-bound, subsequent reductions may substitute them to the same exception-
bound variable, making the raise reduction applicable. For example:

exception x in (Ay.Az.(raise y v1) handle z v3) x x
— exception x in (raise x v1) handle x v,
—» exception x in vy vy.

Insisting that =1 and x5 be exception-bound in reraise ensures that they refer to distinct
exceptions. The reduction handle does not require its variables to be exception-bound,
because substitution necessarily replaces both instances of z in the handle redex with the
same exception name.

We use x to refer to the six reductions for exceptions introduced above. Taking the union
of v (extended to the full syntax) and x yields vx, the notion of reduction for Exception
ML. With evaluation contexts extended to:

E:=][]|Ee|v E]letzbeFE ine|exception x in F| F handle z v

the stepping function ~X may be defined along the same lines as before. Answers for evalyx
are:

(answers) a ::= v | exception y in v | exception Yz in raise z v.

"Due to our use of the variable conventions for €TNmerge, OUr exceptions are generative as in STANDARD

ML [22, 23].

Syntactic Type Soundness 33

Answers of the third form are unhandled exceptions: since handlers are dynamically bound,
it is possible for an exception to be raised when no handler for it is installed. Evaluation is

defined as:

(evalyx) evalyx(e) =a iff e > a.

We can now extend the domain of ¢ to admit functions such as division, by allowing

to return an expression that raises an exception:®

0 : Const x ClosedVal — ClosedVal U {exception x in raise x v | v is closed}.

Functions such as division can now be defined on every element of their input type, by
returning an exception when their application does not make sense.

5.2.2 Typing

We extend the set of types with an additional type constructor:
Tu=u | . |a| = | Texn

The type 7 exn is the type of exceptions with a parameter of type 7.

In typing exceptions in the presence of polymorphism, one encounters similar difficulties
as in typing references. The phrase raise e; e, requires e; to be an exception of type 7 ezxn,
and ey to be a matching parameter of type 7. If es has type 7/, the phrase e3 handle e e
requires e; to be an exception of type 7 exn, and ey to be a handler for such exceptions.
The handler must be a function of type 7 — 7/, since it takes the exception parameter as
input, and returns a value to be returned in place of the value of e3. The obvious typing
for exceptions allows the parameter types of exceptions to be fully polymorphic, permitting
the following expression to be typed:®

let rh be exception x in pair (raise x) (Aa.Ab.(a 3) handle x b)
in (snd rh) (Ad.(fst rh) true) (Ay.+ 1y)

—» exception x in + 1 true

Here, functions to raise and handle the same x-exception are returned as a pair, bound by a
let-expression to rh, and then used. In the body of the let-expression, the expression (raise x)
has type a; — a3, and (Aa.Ab.(a 3) handle x b) has type (inl — a3) — (ay — a3) — as.
If the exception parameter type «a; is generalized, then in the body of the let-expression an
x-exception may be raised with an argument of type bool by (fst rh), and caught by (snd rh),
which is expecting an argument of type int.

Since the problems of typing exceptions and references are similar, it is not surprising
that the same modifications to the typing rules for functional expressions apply: types and
type variables are classified as imperative or applicative, and the let rule is split according
to whether the bound expression is expansive (see Figure 3). Figure 5 presents the addi-
tional typing rules for exceptions. Again, as with Reference ML, we require the additional
restriction that there be no constants of exception type (7 exn).

8Usually a set of exceptions that may be raised by constant functions is defined in an initial environment;
we take an alternative approach to simplify the presentation.
°The constants pair, fst, and snd provide pairing and projection operations.

Syntactic Type Soundness 34

(raise) ' raise : 1y ezn — 7, — T9

I've:m

(handle)

I'>ehandle:m ezn — (11 — 1) —

[z — 71 ezn]...[xp — Ty ezn]>e: 7 7; is imperative 1<i<n

(exn) - -
I > exception z1 ...z, ine:T

Figure 5: Additional typing rules for exceptions

5.2.3 Type Soundness for Exceptions

To establish soundness for the exception typing, we proceed as for references: we estab-
lish type preservation for vx, and show that the faulty expressions of Exception ML are
untypable.

Main Lemma 5.8 (Subject Reduction for vx) If T bep T and e; 25 ey then

s ey T.
Proof. The cases for the reductions of v are the same as before.
Case Ulraise z v]| — raise & v. From I' > Ulraise z v] : 7

Ivraisez v:7'
by app. Hence
(27) I'>raise z : 73 — 72
(28) and Toov:m
by app. From (27)

I'vaz:m exn by app and raise,
Pbraisez:m — 7 by app and raise,
IFvraisez v:T by app with (28).

Case exception x; in exception X3 in e — exception Xx1X2 in e. Similar to pyepye in
Lemma 5.2.

Case X [exception x in €] — exception x in X[e]. Similar to py in Lemma 5.2.
Case vy handle z v — v1. I' > vy : 7 from I' > v handle z v5 : 7 by handle and app.

Case (raise z v1) handle v3 — v3 v1. From I' & (raise z v1) handle z v, : 7 by handle,
app, and raise

! !
I'sovy:7 and T'vovg:7 — 71

where 'z = 7/ ezn. Then I' > vy vy : 7 by app.

Syntactic Type Soundness 35

C exception xzizs in exception xz1xy In

X|(raise 21 v1) handle 73 v3] ~ X[raise 21 v;] Then

I > (raise #1 v1) handle z3 vy : 7/

I > (raise z1 v1) handle: 75 ezn — (3 — ') — 7' by app,
I' > raise @1 vy : 7' by handle,
I' > exception xzjz9 in X[raise z1 v1] : 7 by Replacement™.

With the extension of the various lemmas, the proof of type preservation for Exception ML
is complete. The lemmas go through with simple adaptations to the new syntax. |

There are several new kinds of faulty expressions for Exception ML.

Definition 5.9 (Faulty expressions) The faulty ezpressions of Frception ML are those
expressions containing a subexpression of the form:

(c v) where §(c,v) is undefined,
(raise v) where v ¢ Var,
(e handle v) where v ¢ Var, or
exception yz in C[z v],

where

Cu=][l|CeleC|letzbeCinel|letzbeeinC|Az.C
| exception x in C'| C' handle.

Again, a uniform evaluation lemma can be shown, and the faulty expressions can be
proven untypable. Type soundness for Exception ML follows as before.

Theorem 5.10 (Syntactic Soundness for Exception ML) If be: 7 then either ef)

VX xr
ore— aand >a:T.

5.3 Core ML

We can combine references and exceptions in one language, Core ML, that has all the
essential features of STANDARD ML. In combining the reference and exception extensions,
we must ensure that they interact appropriately.

5.3.1 Semantics

To combine the calculi for the two extensions, the R contexts of the reference fragment must
be extended to include phrases from the exception fragment; likewise, X contexts must be
extended to include phrases from the reference fragment:

R = ...| R handle vy v,
X = ... pbX

Syntactic Type Soundness 36

The phrase exception x in R is not included in R in order that exceptions in the store do
not escape their bindings, i.e., exception-expressions can move through p-expressions by the
exnyy reduction, with appropriate variable renaming:

pl.exception yx in e — exception Yz in pf.e
but not vice versa:
exception xz in pb(r,z).e -/~ pB(r, z).exception yz in e.

If the second were a permissible reduction, the occurrence of z in the store would escape
its binding.

After this extension of the R and X contexts, the resulting notion of reduction for the
full syntax is vrx. The F evaluation contexts used in defining X and evalyrx must also
be extended:

Ex=][]|Ee|vE|ltabe Fine|FE handle vy vy | pf.E | exception x in E.
Answers are:
(answers) a := {exception y in} {pf.} v
| {exception yz in}{ph.} raise z v

(where {phrase} means phrase may be omitted). The complete calculus for Core ML may
be found in the appendix.

5.3.2 Typing

To combine the typing rules for the two fragments is easy, since they both rely on the same
classification of types as imperative or applicative, and do not interfere. The complete
typing rules for Core ML may be found in the appendix.

5.3.3 Type Soundness for Core ML

The type soundness of the resulting calculus requires re-establishing the various lemmas and
theorems for the extended syntax and extended evaluation contexts. These proofs are all
straightforward. There is a combinatorial increase in the kinds of faulty expressions because
of the interaction between the two fragments: references cannot be raised or handled;
exceptions cannot be dereferenced nor assigned. The structure of the proof, however, stays
the same.

Definition 5.11 (Faulty Expressions) The faulty expressions of Core ML are those ex-
pressions containing a subexpression of the form:

(c v) where §(c,v) is undefined;

(! v) where v ¢ Var, (raise v) where v ¢ Var,
(:= v) where v ¢ Var, (e handle v) where v ¢ Var,
po(x,ve).Clz vq], exception yz in C[z v],
exception xz in C[! z], pd(x,v).Clraise z],

exception xz in C[:= z], pd{z,v).Cle handle z],

Syntactic Type Soundness 37

where

Cu=][l|CeleC|letzbeCinel|letzbeeinC|Az.C
| p0.C | p8{x,C).e | exception x in C | C handle.

Type soundness follows from subject reduction, uniform evaluation, and faulty expres-
sions being untypable, as before.

Theorem 5.12 (Syntactic Soundness for Core ML) If & e: 1 then either el or

vIrx TT
e—> aand > a:T.

6 Control ML

In this section we present an extension to Functional ML providing first-class continuations.
The typing of our extension is similar to that described by Duba et al. [8], and implemented
in STANDARD ML oF NEW JERSEY [34]. It is a simple matter to merge this extension with
Core ML.

Control ML extends Functional ML’s syntax with two new constructs:

(Fzpressions) e =1v|ey ey |let z be ey in ey | abort e
(Values) vu=clz|Y]|Az.e|callec

An abort-expression evaluates its subexpression to a value, and returns this value as the
result of the program. When the callcc operator (call-with-current-continuation) is applied
to a function f, it captures a representation of the current continuation (or program control
stack), encapsulates this continuation in an abstraction, and applies f to this abstraction.
If this abstraction is later applied to a value, control transfers to the captured continuation.

6.1 Semantics

While defining calculus reductions for first-class continuations is possible [13, 14], the re-
sulting calculus is inappropriate for our problem. Since we are only interested in evaluation,
we take a simpler approach [11]. We give top-level evaluation rules, program reductions, for
the control operators by extending the stepping relation (——) directly:

(6, By, let, Y) Ele] — E[€] iff e - ¢
(callec) Elcallcc v] = E[v (Az.abort E[z])]
(abort) Elabort €] — e

where

Ex=][]|FEe|vE]|letazbeFine.

In this style of semantics, the evaluation context E represents the current continuation.
An abort reduction simply discards the current continuation, continuing evaluation with its
subexpression. The callcc reduction captures the current continuation, encapsulates it in a
function, and applies callec’s argument to this function. The continuations created by callcc
are abortive: when invoked, they discard the continuation surrounding their application

Syntactic Type Soundness 38

let product be Ax. callcc
(Ak. letrec p be Az. if nil? z then 1
else if = 0 (car z) then k 0
else * (car z) (p (cdr z))
in p x)
in product (cons 2 (cons 3 (cons 0 (cons 5 nil))))

Figure 6: A program illustrating a simple use of callcc

(via an abort reduction), installing instead the captured continuation. Answers are simply
values, and eval is defined as for Functional ML.

Figure 6 illustrates a simple use of callcc. This program computes the product of a
list of numbers, performing no multiplications if the answer is zero. The constants nil,
cons, nil?, car, and cdr are the usual constants and operations for lists. The expressions
if. . .then. . else... and letrec. . .be...in... are syntactic sugar for appropriate constant appli-
cations. This program computes the product of a list of numbers, performing no multiplica-
tions if the answer is zero. The program escapes from pending multiplications by jumping
out of the recursion to the continuation of the application of product.

6.2 Typing

The obvious approach to typing callcc leads to the following rule:
(naive-callcc) I'vecallecc: (11— 1) — 1) —n

As indicated by the callce reduction, callcc takes a function whose argument is a procedural
abstraction of the evaluation context, the continuation. If the evaluation context expects
a value of type 7, then the continuation has type 74 — 7 for any type m. If callec’s
argument ignores this continuation, it must produce a value of type 7, which implies that
callec’s argument must have type (11 — 72) — 71. The result type of the continuation, 7o,
is arbitrary, because the application of k& built into the continuation ensures that it never
returns.
However, this obvious typing is unsound, as illustrated by the following example:'°

let x be callcc (Ak. pair (Ax.x) (Af. k (pair f (Ad.5))))
in (Az. snd x (Ax.+ x 1)) (fst x true)

The callecc application returns a pair of type (@ — a) x ((a — a) — int), consisting of
the identity function and a function that applies a continuation. Since a is not free in the
type environment, it is closed over, and x has type scheme Va.(a — a) x ((a — a) — int)
in the body of the let-expression. In evaluating the body, fst x is the polymorphic identity
function, so it may validly be applied to true. Then the second function of the pair is applied

10 A variation of this example was discovered by Robert Harper and Mark Lillibridge [sml electronic mailing
list, July 8, 1991]. Despite widespread use of a naively typed callcc extension in STANDARD ML oF NEw
JERSEY, it took two years until this problem was discovered.

Syntactic Type Soundness 39

to (Ax.4+ x 1), and the continuation so invoked rebinds x to the pair consisting of (Ax.+ x 1)
and (Ad.5). The second evaluation of fst x true results in an attempt to add 1 to true.

As with references and exceptions, a correct typing for continuations builds upon the
classification of types as imperative or applicative, and requires the let typing rules of
Figure 3. The correct typing rules are:

(callce) I'>callce: (11 — m2) — 1) — 7 if 7 is imperative.
r :
(abort) AL

I'vaborte:ry

An abort-expression may have any type, regardless of the type of its subexpression, because
when evaluated it never returns.

6.3 Weak Type Soundness

Because abort-expressions can return a value of any type, proving type soundness for the
continuation extension is not as simple as for the previous extensions. For example, if e is
an expression of type bool, the program:

if € then 1 else (abort true)

is typable according to the above typing rules, but returns either int or bool according to
whether e is true or false. Thus subject reduction in the usual sense does not hold; however,
a weaker lemma does hold, stating that typabilily is preserved.

Main Lemma 6.1 (Typability Preservation) If v e : 7 and ey — ey then b ey : 7'

Proof. We need only consider the additional cases for the callcc and abort reductions. The
others are simply adapted from Lemma 4.3 (Subject Reduction for Functional ML).

Case Flabort €] — e. Then I' » e : 7/ for some 7/. But since E[abort €] is closed and F
does not bind variables, e is closed, hence > e : 7'.

Case FEJcallcc v] — FE[v (Az.abort E[z])]. From > Flcallcc v] : 7 we have » callecc v : 7,
and by callcc and app
(29) pv:(m —T)—n
where 7 is imperative.
Since F is closed, z does not appear free in F, and we claim that [z — 7] > F[z]: 7.

The proof of this claim proceeds by induction on the structure of £.

Case F' =[]. Then 7 = 7y, and [z — 7] > 2 : 7 by var.
Case E = (F' ¢'). Then v (E'[callcc v] €') : 7, and by app
(30) > F'lcallecc v] : 73 — 7
(31) and > €' : T3
for some 75. Then [¢ — 7] » E'[z] : 73 — 7 by ind. hyp. with (30). Also
[— 7] > € : 73 by Lemma 4.1% with (31) since z ¢ FV(E). Hence

[2+—7m]> E'z] e : 7 by app.

Syntactic Type Soundness 40

Case E = (v £'). Similar to the previous case.

Case F = let 2’ be E' in ¢/. Then v let 2’ be E'[callcc v] in €' : 7. Since (callcc v) is
expansive, F'[callcc v] is expansive. Thus by let,

(32) > E'[callec v] : 73

(33) and [2' — AppClose(rs,0)]> € : 7

for some 3. Then

(34) [— 7] > E2]: 73 by ind. hyp. with (32),
and

[z' — AppClose(Ts,0)][z — 1] > € : 7 by Lemma 4.1% with (33)
i.e. [x — 11][a" — AppClose(rs,0)] > €' : 7.

By the critical restriction that 7 is imperative,
AppClose(rs,0) = AppClose(rs, [— T]),
hence

[— mi][z’ — AppClose(s, [z — 7)) > € : 7
[¢ = 7] > let 2’ be E[z]ine’ 7 by let, with (34).

This completes the proof of the claim. Hence

[z — 71] > abort E[z]: 7 by abort,

> (Az.abort Efz]): 7 — by abs,

> v (Az.abort Efz]): 1y by app with (29)

> Elv (Az.abort Ez])]: 7 by Replacement™. u

The faulty expressions for Control ML are the same as those of Functional ML, extended
to the new syntax.

Definition 6.2 (Faulty Expressions) The faulty ezpressions of Control ML are the ex-
pressions containing a subexpression (¢ v) where 6(c,v) is undefined.

As with Functional ML, the faulty expressions are untypable and Uniform Evaluation holds.
However, since we only have typability preservation, we obtain a weaker version of syntactic
soundness that does not indicate the type of answers.

Theorem 6.3 (Weak Syntactic Soundness) If > e: 7 then either e or e—v.

Proof. By Uniform Evaluation, either e — ¢’ and €’ is faulty, or ef, or e—v. Since
> e : 7, Typability Preservation implies > v : 7/ and > €’ : 7. Suppose er— ¢’ and €’ is
faulty. Since faulty expressions are untypable, > €’ : 7/ is a contradiction, therefore this case

cannot occur. Hence either e or e — v. |

This weaker theorem establishes weak soundness, but does not imply strong soundness.
In fact, if the use of abort is unrestricted, it is not possible to predict the type of an answer,
as the example at the beginning of this section illustrates.

Syntactic Type Soundness 41

6.4 Strong Type Soundness

Examining the proof of Typability Preservation reveals that every reduction with the ex-
ception of abort preserves type. In particular, the callcc reduction preserves type, which
suggests that callcc by itself is strongly sound. To obtain a proof of strong soundness for
callecc, we must eliminate abort from the surface language available to programmers, but
retain it in the underlying language of evaluation for callcc reductions. Because the abort
expressions introduced by callcc applications have a restricted shape, they never return
values of other than the top-level type of the program, and do not compromise strong
soundness.

To establish a subject reduction lemma, we define an augmented type system that infers
both the ordinary type of an expression and a set of abort types. The abort types of an
expression e are the types of the immediate subexpressions of abort-expressions in e. The
augmented system does not permit abort types to be generalized, thereby ensuring that
each syntactic occurrence of abort can produce only one type of answer. This restriction
eliminates expressions such as the following:

let a be Ax. abort x
in if ethen al
else a true

Hence if a well-typed program aborts, the answer produced is one of the program’s abort
types. Type judgments for this augmented system have the form I’ be: 7,7, meaning that
in type environment I', expression e has ordinary type 7 and abort types T, where T is a
set of types. Figure 7 presents the typing rules of the augmented system.

The augmented type system corresponds closely to our original type system for Control
ML. The rule for typing abort-expressions is the only rule that connects the ordinary type
and the abort types of an expression. In each axiom (var, const, Y, callcc) the abort
set is completely unconstrained; the inference rules simply propagate the abort set. The
let-expression rules do not generalize type variables in the set of abort types, hence the
augmented system does not permit polymorphic uses of abort, and accepts a subset of the
expressions accepted by the ordinary system. A Correspondence Lemma establishes this
connection between the ordinary system (>) and the augmented system ().

Lemma 6.4 (Correspondence)

(i) If I'>e:7 and e contains no abort-expressions then I be: 7,1 for any T;

(ii) If Toe:7,T then T e : 7.

Proof. The proof of each direction shows how to construct a deduction for the consequent
from a deduction of the antecedent. Both proofs are straightforward. |

Subject Reduction for the augmented system establishes that reduction preserves the
set of abort types. As the callcc reduction introduces an abort-expression with the top-level
type of the program, the set of abort types preserved by Subject reduction includes the
top-level type.

Syntactic Type Soundness 42

(var) F;:L‘ZT,T if T(x)»>r
(const) Loc:rT if TypeOf(c) = 7
(Y) F;YZ((T1—>T2)—>T1—>T2)—>T1—>T2,T
(abs) F[(‘;l‘ —7)be:n, T
Lo dze:m — 1, T
I‘gel i1 — 1o, T I‘gez s, T
(app) 7
I'>eyes:m,T
(let,) L& c7y, T aF[:L‘»—> Close(ﬁ,F,T)]ge c1o, T
Ibletzbevine:m,T
(let.) Toe:m, T [z — AppClose(r,T,T)] bey:mo, T e ¢ Values
et, =
Ilet xbeeyiney :m, T
(callcc) [&callece: (1, —) —) — 7, T if 7 is imperative
Toe:n,T T
(abort) D: S n e
I'>aborte:m, T
Close(r,I'\T) = VYoai...an.T
where {a1,...,a,} = FTV(r)\(FITV([')UFTV(T))
AppClose(t,T',T) = Vaj...an.T
where {a1,...,an}t = (FTV(r)\ (FTV(I)U FTV(T))) N AppType Var

Figure 7: The augmented type system for Control ML

Main Lemma 6.5 (Subject Reduction) If be 7,7 and 7 € T and e, — ey then
bey:7 T and 7' €T.
Proof. The proof proceeds by case analysis according to the reduction e; — e3. Each

case is easily adapted from the corresponding case in the proof of Typability Preservation
with straightforward adaptations of the necessary lemmas. |

With Uniform Evaluation and the fact that faulty expressions are untypable (in the
ordinary system), we obtain a syntactic soundness theorem for abort-free expressions.

Theorem 6.6 (Syntactic Soundness) If > e : 7 and e contains no abort-ezpressions
then either et or e—» v and > v : T.

Proof. By Uniform Evaluation, either e — ¢’ and €’ is faulty, or efl, or e—v. Since
> e : 7 and e contains no abort-expressions, by Correspondence boe 7,{7}. Subject
Reduction then implies & e’ : T, {r}. Similarly BoT, {7}, and by Correspondence > €' : 7
and > v : 7. Suppose e — ¢’ and €' is faulty. Since faulty expressions are untypable, > €' : 7
is a contradiction, therefore this case cannot occur. Hence either e ft or e+—v and > v : 7.
|

Syntactic Type Soundness 43

7 Discussion

Subject reduction is the key lemma in our approach to proving type soundness. In order
to demonstrate subject reduction, it must be possible to assign a type to each intermediate
evaluation state of a program. This is most easily accomplished by specifying evaluation as
rewriting. Rewriting may be specified as local reductions, as our calculus for Core ML, or
as program (or top-level) rewriting, as in Control ML.

Through most of this paper, we present the semantics of the various languages with
calculi that permit local reductions. It is also possible to use our proof technique with a
semantics that specifies only program reductions (——), as in Control ML. Such a semantics
for Reference ML is slightly simpler, as the ref, pycrge, and pjip reductions coalesce into one
program reduction, but the structure of the proof is essentially the same. Our work on an
alternative type system for references uses this approach [38]. We chose to use calculi in
this paper as the resulting proofs are more regular in structure.

In specifying the semantics of references as a calculus, we use an additional expression
form, the p-expression, that is not present in ML. As noted earlier, p-expressions may be
regarded as abbreviations, both from a semantic perspective and a typing perspective (the
typing rule for p-expressions can be derived from the abbreviation). In principle, it is pos-
sible to eliminate p-expressions from the syntax, however the specification of redexes in the
reduction rules becomes complicated. Alternatively, p-expressions may be considered as be-
longing to the state space of evaluation, and not to the language of programs that may be
written by a programmer. In a presentation of the typing rules for consumption by program-
mers, the typing rule for p-expressions may be deleted. However, unlike p-expressions, the
abort-expressions of the continuation fragment cannot be considered as abbreviations [10].
To obtain a strong soundness theorem, abort-expressions must be considered as belonging
only to the evaluation space, and not to the syntax of programs. The exception fragment
has no such additional expressions.

Other operational or denotational techniques for specifying semantics introduce addi-
tional semantic objects, such as closures and stores, rather than additional expression forms.
Since the type system does not apply to such objects, stating and proving strong type sound-
ness requires introducing a semantic relation (j=) between semantic objects and types (see
Section 2). We believe that introducing additional expression forms and typing rules is the
simpler choice, and offer the simpler proofs produced by our method as evidence.

While in this paper we have concentrated on the essential aspects of ML, there are other
features of static type systems that we believe our technique can address. STANDARD ML
contains a datatype specification mechanism that allows the definition of new types and
associated data constructors. This mechanism is indispensable when writing non-trivial
ML programs. Subtyping, inheritance, and type inference for records are a strong focus
of recent research efforts to explain object-oriented languages, as many popular object-
oriented languages have unsound static type systems. Reppy [29] has successfully addressed
concurrency with our technique; it should also be possible to treat nondeterminism and
distributed computing. We have used our technique to prove an alternative type system for
references sound [38]. Finally, it may be possible to adapt our technique to demonstrate
the consistency of module systems like that of STANDARD ML.

Syntactic Type Soundness 44

Acknowledgements

We would like to thank Bob Harper for pointing out that type preservation is known as
subject reduction in combinatory logic, and Hans Boehm and the anonymous referees for
comments on earlier drafts of this paper.

Syntactic Type Soundness

Appendix: The Core of STANDARD ML

Syntax
e:=uv]ey ey |let z be ey iney| pb.e| exception x in e
vu=c|a|Y|Az.e|ref|!]|:=|raise | e handle|:= v | raise v | e handle v
6 = {(z,v)}"
Y = at
a ::= {exception x in}{pf.} v | {exception xz in} {pf.} raise z v
Semantics

eval(e) = a iff e—a
Ele] — E[e'] iff e — €’
E:=][]|Fe|v E]|letazbeEine|F handle vy vy | pf.E | exception y in E

Functional ML

(6) cv — 0(c,v) if 8(e¢,v)is defined
(5v) (Az.e) v — e[z +— 1]
(let) let 2 be v ine — e[z — 0]
(Y) Yo — v (Ax.(Yv)a)
References
(ref) ref v — p(z,v).x
(deref) pd{z,v).R[!] — pb(z,v).R[v]
(assign) pO{x,v1).R[:= & vy] — pb{x,vy). R[v]
(Pmerge) pO1.p0z.€ — pb16;.€
(piigt) R[pb.e] — pb.R[e] if R # []

R:=][]|Re|v R|let z be Rine| R handle vy v,

Fzceptions

(raise) Ulraise z v] — raise z v if U # []
(handle) (raise z v1) handle z v — vy vy

. exception xz1xo In ___exception xx173 in
(reraise) X[(raise z1 v1) handle z3 vy] — Xraise z1 vy] T #
(unhandle) v1 handle z v, — v
(€xnpery:) exception i in exception y; in e — exception x1X2 in e
(exnyf) X [exception x in e] — exception x in X[e] if X #]

U ::
X =

J|Ue|lvU|letazbelUine
[[| X e|v X |let 2 be X ine|X handle v; vy | p8.X

Syntactic Type Soundness 46

Typing
Functional ML

(var) Fea:7 if T'(z)>71
(const) Ieoc:r if TypeOf(c) >
(Y) I'eY:((mn—mn)—=n—"n)—="7—"n

[z~ mn]ve:n

(abs)
T'vAlee:m — 7
I'vep:mp—m I'bey:m
(app) T
(let,) I'vv:m Iz — Close(r,I')]>e:m
I'pletzbevine:n
(let.) I'bey:m Iz — AppClose(r1,I)]|>ex: 170 €1 ¢ Values

I'vlet z beejineg:m

Close(t,1') =Vaoq ...a,.7 where {ay,...,a,} = FTV(r)\ FTV(I')
AppClose(t,I') = Vay ...a,.7 where {ay,...,a,} = (FTV(r)\ FTV(I'))N AppType Var

References
(ref) I'cref: 7 — 7ref if 7isimperative
(deref) I'el:rTref =7
(assign) I's:=:(rref =7 —71)

Ulzy — 71y ref].. ey — mhref]pe: T
Tlzy — 1y ref] ... [an — Tyref] > v; i1y 7 is imperative 1 <i<mn

(rho)

I'splzy,v1) .. (zp,vn).€:T

Fzceptions
(raise) T'vraise: 7 ezn — 1 — T
I :
(handle) AR
I'>ehandle: 7 ezn — (11 — 72) — T2

() I[zy — 71 exn]...[x, — T exn]>e: T 7;is imperative 1<i<n
exn

I' > exception z1 ...z, In€e: T

Syntactic Type Soundness 47

References

[1]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

ABADI, M., CarDELLI, L., PIERCE, B., AND PLOTKIN, G. Dynamic typing in a
statically-typed language. ACM Transactions on Programming Languages and Systems
13, 2 (April 1991), 237-268. Previously appeared in: Proceedings of the 16th Annual
Symposium on Principles of Programming Languages (January 1989), 213-227.

BarenDrREGT, H. P. The Lambda Calculus: Its Syntax and Semantics, revised ed.,
vol. 103 of Studies in Logic and the Foundations of Mathematics. North-Holland,
Amsterdam, 1984.

CRrANK, E.; AND FELLEISEN, M. Parameter-passing and the lambda calculus. Proceed-

ings of the 18th Annual Symposium on Principles of Programming Languages (January
1991), 233-244.

Curry, H. B., aND FEvs, R. Combinatory Logic, Volume I. North-Holland, Ams-
terdam, 1958.

Dawmas, L., AND MILNER, R. Principal type schemes for functional programs. Proceed-
ings of the 9th Annual Symposium on Principles of Programming Languages (January
1982), 207-212.

Damas, L. M. M. Type Assignment in Programming Languages. PhD thesis, Univer-
sity of Edinburgh, 1985.

DoNAHUE, J., AND DEMERS, A. Data types are values. ACM Transactions on Pro-
gramming Languages and Systems 7, 3 (July 1985), 426-445.

DuBa, B. F., HArPER, R., AND MACQUEEN, D. Typing first-class continuations
in ML. Proceedings of the 18th Annual Symposium on Principles of Programming
Languages (January 1991), 163-173.

FeLLEISEN, M. The theory and practice of first-class prompts. Proceedings of the 15th
Annual Symposium on Principles of Programming Languages (1988), 180-190.

FeLLEISEN, M. On the expressive power of programming languages. Science of Com-
puter Programming 17 (1991), 35-75. Preliminary version in: Proceedings of the Fu-
ropean Symposium on Programming, LNCS 432 (1990), 134-151.

FeLLEISEN, M., AND FRIEDMAN, D. P. Control operators, the SECD-machine, and
the A-calculus. In Formal Description of Programming Concepts III, M. Wirsing, Ed.
Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1986, pp. 193-217.

FELLEISEN, M., AND FRIEDMAN, D. P. A syntactic theory of sequential state. Theo-
retical Computer Science 69, 3 (1989), 243-287. Preliminary version in: Proceedings of
the 14th Annual Symposium on Principles of Programming Languages, 1987, 314-325.

FELLEISEN, M., FRIEDMAN, D. P., KOHLBECKER, E. E., AND DUuBA, B. A syntactic
theory of sequential control. Theoretical Computer Science 52, 3 (1987), 205-237.
Preliminary version in: Proceedings of the Symposium on Logic in Computer Science,
1986, 131-141.

Syntactic Type Soundness 48

[14] FELLEISEN, M., AND HIEB, R. The revised report on the syntactic theories of sequen-
tial control and state. Tech. Rep. TR-100, Rice University, June 1989. To appear in:
Theoretical Compuler Science, 1992.

[15] HinDLEY, R. The principal type-scheme of an object in combinatory logic. Transac-
tions of the American Mathematical Society 146 (December 1969), 29-60.

[16] HinDLEY, R. J., AND SELDIN, J. P. Introduction to Combinators and \-Calculus.
Cambridge University Press, 1986.

[17] LErOY, X., AND WEIs, P. Polymorphic type inference and assignment. Proceedings of

the 18th Annual Symposium on Principles of Programming Languages (January 1991),
291-302.

[18] MacQuEeeN, D. B., ProTkiN, G., AND SETHI, R. An ideal model for recursive
polymorphic types. Proceedings of the 11th Annual Symposium on Principles of Pro-
gramming Languages (January 1984), 165-174.

[19] Mason, 1., aND TarLcorT, C. Programming, transforming, and proving with func-
tion abstractions and memories. In Proceedings of the International Conference on
Automata, Languages, and Programming, LNCS 372 (1989), Springer-Verlag, pp. 574
588.

[20] MILNER, R. A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17 (1978), 348-375.

[21] MILNER, R., AND ToFTE, M. Co-induction in relational semantics. Theoretical Com-
puter Science 87 (1991), 209-220.

[22] MILNER, R., AND To¥rTE, M. Commentary on Standard ML. MIT Press, Cambridge,
Massachusetts, 1991.

[23] MILNER, R., TorTE, M., AND HARPER, R. The Definition of Standard ML. MIT
Press, Cambridge, Massachusetts, 1990.

[24] MiTcHELL, J. C., AND HarRPER, R. The essence of ML. Proceedings of the 15th
Annual Symposium on Principles of Programming Languages (January 1988), 28-46.

[25] MiTcHELL, J. C., AND PLOTKIN, G. D. Abstract types have existential type. ACM
Transactions on Programming Languages and Systems 10, 3 (July 1988), 470-502. Also
appeared in: Proceedings of the 11th Annual Symposium on Principles of Programming
Languages, 1984, 37-51.

[26] ProTKIN, G. D. Call-by-name, call-by-value and the lambda-calculus. Theoretical
Computer Science 1 (1975), 125-159.

[27] ProTKIN, G. D. A structural approach to operational semantics. Tech. Rep. DAIMI
FN-19, Arhus University, September 1981.

[28] REEs, J., AND CLINGER, W. Revised® report on the algorithmic language Scheme.
SIGPLAN Notices 21, 12 (December 1986), 37-79.

Syntactic Type Soundness 49

[29] REppPY, J. H. Higher-order Concurrency. PhD thesis, Cornell University, 1991.

[30] REYNOLDS, J. Definitional interpreters for higher order programming languages. ACM
Conference Proceedings (1972), 717-740.

[31] REYNOLDs, J. C. On the relation between direct and continuation semantics. Pro-

ceedings of the International Conference on Automata, Languages, and Programming
(1974), 141-156.

[32] ScoTT, D. Data types as lattices. SIAM Journal of Computing 3, 5 (1976), 522-586.

[33] SELDIN, J. P. A sequent calculus for type assignment. Journal of Symbolic Logic 42
(1977), 11-28.

[34] STANDARD ML oF NEW JERSEY release notes (version 0.75). AT&T Bell Laboratories,
November 1991.

[35] TaLpIN, J.-P., aAND JouvELOT, P. The type and effect discipline. Tech. Rep. EMP-
CRI A/206, Ecole des Mines de Paris, July 1991.

[36] TorTE, M. Operational Semantics and Polymorphic Type Inference. PhD thesis,
University of Edinburgh, 1987.

[37] TorTE, M. Type inference for polymorphic references. Information and Computation
89, 1 (November 1990), 1-34.

[38] WRIGHT, A. K. Typing references by effect inference. In Proceedings of the European
Symposium on Programming, LNCS 582 (1992), Springer-Verlag, pp. 473-491.

