Modeling and Understanding
Object-Oriented Programming

e TERRCATSTE
1 B I . TERRORISTE

FUNDING THOSE BAME

"IM THINKING ABOUT | 1T MY PATRIOTIC [mecause Tven Tie) POl AcTusLLY, DEVELEPTNG

m,ﬂ‘-:c. A no'at FnLK.L oUTY TO COUNTRIES THAT HATE COUNTRIES LWIOULD BUY
EFFICTENT CAR. COUNTRY'S DEPENDE] US LITLL MAVE LESS THE OIL YOU BAVED,
MONEY TO FUND THUS ADEQUATEL'Y

(a1 easT 1womenT || |7 om 15 & roscene)
BE FUNDING THEM COMMOOITY. THE

PLYBELF J CAFTTALTET BYSTEM
] —— VIRTUALLY GUARANTEES
THAT YOULL END UP

BUYING THE LOWEST
COBT OIL FROM SCURCES
| UNKNOLN TO YOU.)

Cunning Plan: Focus On Objects

« A Calculus For OO
 Operational Semantics
» Type System

» Expressive Power

« Encoding OO Features

LRE

T HER DI

The Need for a Calculus

» There are many OO languages with many
combinations of features

» We would like to study these features
formally in the context of some primitive
language
- Small, essential, flexible

* We want a “A-calculus” or “IMP” for objects

#3

Why Not Use A-Calculus for 00?

* We could define some aspects of 00 languages
using A-calculus

- e.g., the operational semantics by means of a translation
to A-calculus

« But then the notion of object be secondary
- Functions would still be first-class citizens

« Some typing considerations of OO languages are
hard to express in A-calculus
- i.e., object-orientation is not simply “syntactic sugar”

Object Calculi Summary

o Asin A-calculi we have
- operational semantics
- denotational semantics
- type systems
- type inference algorithms
- guidance for language design
» We will actually present a family of calculi
- typed and untyped
- first-order and higher-order type systems

« We start with an untyped calculus

An Untyped Object Calculus

« An object is a collection of methods
- Their order does not matter

« Each method has
- A bound variable for “self” (denoting the host object)
- A body that produces a result

« The only operations on objects are:
- Method invocations
- Method update

Untyped Object Calculus Syntax

« Syntax:
a,b:i=x - variables
| [m;=c¢(x)b;] - object constructor
- g is a variant of Greek letter o
- x is the local name for “self”
| a.m - method invocation

- no arguments (just the self)

- method update

- this is an expression !

- the result is a copy of the object
with one method changed

- This is called the untyped c-calculus (Abadi & Cardelli)

| a.m <+ ¢(x) b

47

First Examples

» An object o with two methods m; and m,
- m, returns an empty object
- m, invokes m, through self
0=[mg=g(x)[I, m;=cq(x)x.my]

o A bit cell with three methods: value, set and reset
- value returns the value of the bit (0 initially)
- set sets the value to 1, reset sets the value to 0
- models state without L/IMP (objects are primary)
b = [value = ¢(x). O,
set = g(x). x.value < ¢(y). 1,
reset = ¢(x). x.value < ¢(y). 0]

48

Operational Semantics

* a — b means that a reduces in one step to b
e The rules are: (let o be the object [m; = ¢(x). b;])

0.m; — [o/x] b,
0.my <= ¢g(y). b — [my =c(y). b, m;=c(x). b]
(ie{l,..,n}-{Kk}

We are dealing with a calculus of objects

This is a deterministic semantics (has the Church-
Rosser or “diamond” property)

Expressiveness

» A calculus based only on methods with “self”
- How expressive is this language? Let’s see.
- Can we encode languages with fields? Yes.
- Can we encode classes and subclassing? Hmm.
- Can we encode)-calculus? Hmm.

« Encoding fields
- Fields are methods that do not use self
- Field access “o.f” is translated directly
« to method invocation “o.f”
- Field update “o.f < e” is translated to “o.f + ¢(x) e”
- We will drop the ¢(x) from field definitions and updates

As Expressive As A

» Encoding functions
- A function is an object with two methods
« arg - the actual value of the argument
«val - the body of the function
- A function call updates “arg” and invokes “val”
A conversion from A-calculus expressions

X = X.arg (read the actual argument)

€& = (e.arg < ¢(y) &).val

Ax. e = [arg = ¢(y) y.arg, val = ¢(x). e]
- The initial value of the argument is undefined

« From now on we use A notation in addition to ¢

A-calculus into ¢-calculus

» Consider the conversion of (ix.x) 5

Let o = [arg = ¢(z) z.arg, val = ¢(x) x.arg]

(Ax.x) 5 = (0.arg « ¢(y) 5).val
« Consider now the evaluation of this latter ¢-term
e Let 0o’ =[arg =¢(y) 5, val = ¢(x) x.arg]

(0.arg + g(y) 5).val N
o’.val = [arg = g(y) 5, val = ¢(x) x.arg].val —
x.arg[o’/x] = 0’.arg N

5[0’/y] =5

Encoding Classes

« Aclass is just an object with a “new”
method, for generating new objects
- Arepository of code for the methods of the
generated objects (so that generated objects do
not carry the methods with them)
» Example: for generating o = [m; = g(x) b;]
c = [new = ¢(z) [m; = g(x) z.m;x],
m; = ¢(self) Ax. b;]
- The object can also carry “updateable” methods
- Note that the m; in c are fields (don’t use self)

#13

Class Encoding Example

« A class of bit cells
BitClass = [new = ¢(z). [val = ¢(x) O,
set = ¢(x) z.set x,
reset = ¢(x) z.reset x],
set = ¢(z) Ax. x.val + ¢(y) 1,
reset = ¢(z) Ax. x.val < ¢(y) 0]
« Example:
BitClass.new — [val = ¢(x) O,
set = g(x) BitClass.set x,
reset = g(x) BitClass.reset x]
- The new object carries with it its identity

- The indirection through BitClass expresses the dynamic
dispatch through the BitClass method table

Inheritance and Subclassing

« Inheritance involves re-using method bodies
FlipBitClass =
[new = ¢(z) (BitClass.new).flip < ¢(x) z.flip x,
flip = g(z) Ax. x.val « not (x.val)]
o Example:
FlipBitClass.new — [val = ¢(x) O,
set = ¢(x) BitClass.set x,
reset = ¢(x) BitClass.reset x,
flip = ¢(x) FlipBitClass.flip x]
- We can model method overriding in a similar way

#15

Object Types

The previous calculus was untyped
« Can write invocations of nonexistent methods
[foo = ¢(x) ...].bogus
« We want a type system that guarantees that well-
typed expressions only invoke existing methods
 First attempt:
- An object’s type specifies the methods it has available:
A:=[m;, my, .., m]
- Not good enough:
If o : [m, ...] then we still don’t know if o.m.m is safe
- We also need the type of the result of a method

First-Order Object Types.
Subtyping
« Second attempt:
A:=[m;: Al
- Specify the available methods and their result types

« Wherever an object is usable another with more
methods should also be usable

- This can be expressed using (width) subtyping:

A<B B<C
A<A A<C
n>=k

[y Aq,. .., iy Ap] < [mq A, .., my, s Ayl

Typing Rules

FreEb: A my: A €
MEbm; A

Fae:AkRb : A;
FE[m;=c¢(z:A)b]: A

FrEbv:A mi:A;€A T ARV A;

M Ebam; < c(z)b 1 A

updating a method

A

Type System Results

e Theorem (Minimum types)

- If '+ a: A then there exists B such that for any
A’ suchthatTHa: A’ wehave B < A’

- If an expression has a type A then it has a
minimum (most precise) type B

e Theorem (Subject reduction)
-fgrFa:Aanda—vthenJFv:A

- Type preservation. Evaluating a well-typed
expression yields a value of the same type.

Type Examples

« Consider that old BitCell object
o = [value = ¢(x). 0,
set = ¢(x). x.value < c(y). 1,
reset = ¢(x). x.value < ¢(y). 0]

« An appropriate type for it would be
BitType = [value : int, set : BitType, reset : BitType]
- Note that this is a recursive type
- Consider part of the derivation that o : BitType (for set)

a . BitType value:int € BitType .« :BitType,y :BitTypek 1. int
@ BitType b x.value + <(y)1 : BitType

Unsoundness of Covariance

« Object types are invariant (not co/contravariant)
« Example of covariance being unsafe:
- LetU=[] andL=[m:U]
By our rulesL < U
- LetP=[x:U,f:UlandQ=[x:L, f:U]
- Assume we (mistakenly) say that Q < P (hoping for
covariance in the type of x)
Consider the expression:
q:Q=[x=[m=[]], f=q¢(s:Qs.x.m]
- Then q : P (by subsumption with Q < P)
Henceq.x«[] : P
This yields the object [x =[], f = ¢(s:Q) s.x.m]
- Hence (q.x + []).f: U yet (q.x < []).f fails!

Covariance Would Be Nice Though

« Recall the type of bit cells
BitType = [value : int, set : BitType, reset : BitType]
« Consider the type of flipable bit cells

FlipBitType = [value : int, set : FlipBitType, reset :
FlipBitType, flip : FlipBitType]

« We would expect that FlipBitType < BitType
» Does not work because object types are invariant

« We need covariance + subtyping of recursive types
- Several ways to fix this

21] 22]
: : Subtyping with
Variance Annotations UDLYPINS .
Variance Annotations
« Covariance fails if the method can be updated « Invariant subtyping (Read-Write)
- If we never update set, reset or flip we could allow [.m%:B.]<[.mf:B".] ifB=B
covariance
« We annotate each method in an object type with a + Covariant subtyping (Read-only)
variance: [..m®:B.]<[.m#:B.] ifB<B
+ means read-only. Method invocation but not update . . .
- means write-only. Method update but not invocation + Contravariant SUbtyp":]g (Wr1tfe-only)
0 means read-write. Allows both update and invocation [..m:B..]<[.m:B".] ifB"<B
. We musF change the typing rules to check « In some languages these annotations are implicit
annotations .
. - e.g., only fields can be updated
* And we can relax the subtyping rules
23] 24]

Classes, Types and Variance

« Recall the type of bit cells
BitType = [value? : int,
set* : BitType, reset* : BitType]
« Consider the type of flipable bit cells
FlipBitType = [value? : int, set* : FlipBitType,
reset* : FlipBitType, flip* : FlipBitType]
« Now we have FlipBitType < BitType
- Recall the subtyping rule for recursive types
FlipBitType < BitType

T<o
jt FlipBitType.T < jt BitType.o

Classes and Types

e Let A =[m;: B;] be an object type
o Let Class(A) be the type of classes for objects of
type A
Class(A) = [new : A, m; : A — B]
- Aclass has a generator and the body for the methods

» Types are distinct from classes
- Aclass is a “stamp” for creating objects
- Many classes can create objects of the same type

- Some languages take the view that two objects have the
same type only if they are created from the same class
» With this restriction, types are classes

- In Java both classes and interfaces act as types

Higher-Order Object Types

» We can define bounded polymorphism
« Exmaple: we want to add a method to BitType that
can copy the bit value of self to another object
lendVal = ¢(z) Ax:t<BitType. x.val + z.val
- Can be applied to a BitType or a subtype
lendVal : Vt < BitType. t — t
- Returns something of the same type as the input
- Can infer that “z.lendVal y : FlipBitType” if “y :
FlipBitType”
« We can add bounded existential types
- Ex: abstract type with interface “make” and “and”
Bits = 3t < BitType. {make : nat - t,and : t = t — t}
- We only know the representation type t < BitType

Conclusions

Object calculi are both simple and expressive
Simple: just method update and method invocation
Functions vs. objects
- Functions can be translated into objects
- Objects can also be translated into functions

« But we need sophisticated type systems

« A complicated translation
 Classes vs. objects

- Class-based features can be encoded with objects:
subclassing, inheritance, overriding

Homework

» Good luck with your project presentations!
» Have a lovely summer.

T I HAD A COMPUTER, 4 WUD STILL URVE O READ THE n -
W SRE 1D GET BOOK, AMD TEWL . MM, WHATS ML TUE
BETIER GRADES oM THE COMPUTER FUSS MBONT COMPUTERS
W Bock, REFCRTS Y WART ok T S -
Sl e T {, Yo ¥ =

