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Proofs
“Checking proofs ain’t like dustin’ crops, boy!” 
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Proof Generation

• We want our theorem prover to emit proofs
– No need to trust the prover
– Can find bugs in the prover
– Can be used for proof-carrying code
– Can be used to extract invariants  
– Can be used to extract models (e.g., in SLAM)

• Implements the soundness argument
– On every run, a soundness proof is constructed
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Proof Representation

• Proofs are trees
– Leaves are hypotheses/axioms
– Internal nodes are inference rules

• Axiom: “true introduction”
– Constant: truei : pf
– pf is the type of proofs

• Inference: “conjunction introduction”
– Constant: andi : pf ! pf ! pf

• Inference: “conjunction elimination”
– Constant: andel : pf ! Pf

• Problem:
– “andel truei : pf” but does not represent a valid proof
– Need a more powerful type system that checks content

` true

 

` A

` A Æ B

` A Æ B

` A      ` B

truei

andi

andel
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Dependent Types
• Make pf a family of types indexed by formulas

– f : Type (type of encodings of formulas)
– e : Type (type of encodings of expressions)
– pf : f ! Type (the type of proofs indexed by formulas: it 

is a proof that f is true)

• Examples:
– true : f
– and : f ! f ! f

– truei : pf true
– andi : pf A ! pf B ! pf (and A B)

– andi : ΠA:f. ΠB:f. pf A ! pf B ! pf (and A B)
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Proof Checking

• Validate proof trees by type-checking them
• Given a proof tree X claiming to prove A Æ B

• Must check X : pf (and A B)
• We use “expression tree equality”, so 

– andel (andi “1+2=3” “x=y”) does not have type pf (3=3)
– This is already a proof system! If the proof-supplier wants 

to use the fact that 1+2=3 , 3=3, she can include a proof 
of it somewhere!

• Thus Type Checking = Proof Checking
– And it’s quite easily decidable! ¤
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Communication and ConcurrencyCommunication and Concurrency
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Preliminary Definition

• A calculus is a method or system of 
calculation

• The early Greeks used pebbles arranged in 
patterns to learn arithmetic and geometry

• The Latin word for pebble is 
“calculus” (diminutive of calx/calcis)

• Popular flavors:
– differential, integral, propositional, predicate, 

lambda, pi, join, of communicating systems
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Cunning Plan

• Types of Concurrency
• Modeling Concurrency
• Pi Calculus
• Channels and Scopes
• Semantics
• Security
• Real Languages
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Take-Home Message

• The pi calculus is a formal system for 
modeling concurrency in which 
“communication channels” take center stage.

• Key concerns include non-determinism and 
security. The pi calculus models synchronous 
communication. Can someone eavesdrop on 
my channel? 
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Possible Concurrency

• No Concurrency
• Threads and Shared Variables

– A language mechanism for specifying interleaving 
computations; often run on a single processor

• Parallel (SIMD)
– A single program with simultaneous operations on 

multiple data (high-perf physics, science, …)

• Distributed processes
– Code running at multiple sites (e.g., internet agents, 

DHT, Byzantine fault tolerance, Internet routing)

• Different research communities ) different notions 
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(There Must Be) Fifty Ways to 
Describe Concurrency

• No Concurrency
– Sequential processes are modeled by the λ-calculus. 

Natural way to observe an algorithm: examine its output 
for various inputs ) functions 

• Threads and Shared Variables
– Small-step opsem with contextual semantics (e.g., 

callcc), or special type systems (e.g., [FF00])

• Parallel (SIMD)
– Not in this class (e.g., Titanium, etc.)

• Distributed processes
– ???
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Modeling Concurrency

• Concurrent systems are naturally non-deterministic
– Interleaving of atomic actions from different processes
– New concurrent scheduling possibly yields new result

• Concurrent processes can be observed in many ways
– When are two concurrent systems equivalent?
– Intra-process behavior vs. inter-process behavior

• Concurrency can be described in many ways
– Process creation: fork/wait, cobegin/coend, data 

parallelism
– Process communication: shared memory, message 

passing
– Process synchronization: monitors, semaphores, 

transactions
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Message Passing

• These “many ways” lead to a variety of 
process calculi

• We will focus on message passing!
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Communication and Messages
• Communication is a fundamental concept

– But not for everything (e.g., not much about parallel or 
scientific computing in this lecture)

• Communication through message passing
– synchronous or asynchronous
– static or dynamic communication topology
– first-order or high-order data

• Historically: Weak treatment of communication
– I/O often not considered part of the language

• Even “modern” languages have primitive I/O
– First-class messages are rare
– Higher-level remote procedure call is rare
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Calculi and Languages
• Many calculi and languages use message-passing

– Communicating Sequential Processes (CSP) (Hoare, 1978)
– Occam (Jones)
– Calculus of Communicating Systems (CCS) (Milner, 1980)
– The Pi Calculus (Milner, 1989 and others)
– Pict (Pierce and Turner)
– Concurrent ML (Reppy) 
– Java RMI

• Messaging is built in some higher-level primitives
– Remote procedure call
– Remote method invocation
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The Pi Calculus
• The pi calculus is a process algebra 

– Each process runs a different program
– Processes run concurrently
– But they can communicate

• Communication happens on channels
– channels are first-class objects

• channel names can be sent on channels

– can have access restrictions for channels
• In λ-calculus everything is a function
• In Pi calculus everything is a process
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Pi Calculus Grammar
• Processes communicate on channels

– c<M> send message M on channel c
– c(x) receives message value x from channel c

• Sequencing
– c<M>.p sends message M on c, then does p
– c(x).p receives x on c, then does p with x (x is bound in p)

• Concurrency
– p | q is the parallel composition of p and q 

• Replication
– ! p creates an infinite number of replicas of p
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Examples

• For example we might define
Speaker = air<M> // send msg M over air
Phone = air(x).wire<x> // copy air to wire
ATT = wire(x).fiber<x> // copy wire to fiber
System = Speaker | Phone | ATT

• Communication between processes is modeled by 
reduction:
Speaker | Phone ! wire<M> // send msg M to wire
wire<M> | ATT ! fiber<M> // send msg M to fiber

• Composing these reductions we get
Speaker | Phone | ATT  ! fiber<M> // send msg M to fiber
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Channel Visibility
• Anybody can monitor an unrestricted channel!
• Modeling such snooping: 

WireTap = wire(x).wire<x>.NSA<x>
– Copies the messages from the wire to NSA
– Possible since the name “wire” is globally visible

• Now the composition:
WireTap | wire<M> | ATT !
wire<M>.NSA<M> | ATT !
NSA<M> | fiber<M> // OOPS !
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Restriction

• The restriction operator (νc) p makes a fresh 
channel c within process p
� ν is the Greek letter “nu”
– The name c is local (bound) in p
– c is not known outside of p

• Restricted channels cannot be monitored
    wire(x) … | (ν wire)(wire<M> | ATT) !
    wire(x) … | fiber<M>

• The scope of the name wire is restricted
• There is no conflict with the global wire
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Restriction and Scope

• Restriction
– is a binding construct (like λ, 8, 9, ...)
– is lexically scoped
– allocates a new object (a new channel)
– somewhat like Unix pipe(2) system call

(νc)p    is like    let c = new Channel() in p

• c can be sent outside its initial scope 
– But only if p decides so (intentional leak)
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First-Class Channels

• Channel c can leave its scope of declaration
– via a message d<c> from within p
– d is some other channel known to p
– Intentional with “friend” processes (e.g., send my 

IM handle=c to a buddy via email=d)
• Allowing channels to be sent as messages 

means communication topology is dynamic
– If channels are not sent as messages (or stored in 

the heap) then the communication topology is 
static

– This differentiates Pi-calculus from CCS
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Example of First-Class Channels

Consider:
    MobilePhone= air(x).cell<x>
    ATT1 = wire<cell>
    ATT2 = wire(y).y(x).fiber<x>
in
   (ν cell)( MobilePhone | ATT1) | ATT2

• ATT1 passes cell out of the static scope of the 
restriction ν cell

y will be
bound to 

cell!
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Scope Extrusion
• A channel is just a name

– First-class names must be usable in any scope
• The pi calculus restrictions to distribute:

   ((ν c) p) | q  =  (ν c)(p | q)     if c not free in q 
• Renaming is needed in general:

   ((ν c) p) | q =    ((ν d) [d/c] p) | q    
=    (ν d)([d/c] p| q)

where “d” is fresh (does not appear in p or q)
• This scope extrusion distinguishes the pi 

calculus from other process calculi
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Syntax of the Pi Calculus

There are many versions of the Pi calculus
A basic version:
 p,q ::= (p and q are processes)
       nil nil process (sometimes written 0)
       x<y>.p sending data y on channel x
       x(y).p receiving data y from channel x
       p | q parallel composition
       !p replication
       (ν x)p restriction (new channel x used in p)
• Note that only variables can be channels and 

messages
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Operational Semantics
• One basic rule of computation: data transfer

– Synchronous communication: 1 sender, 1 receiver
– Both the sender and the receiver proceed afterwards

• Rules for local (non-communicating) progress:
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Structural Congruence
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Semantics and Evaluation

• IMP opsem has the “diamond property”
• Does the Pi Calculus? Why or why not?

1+2+3

3+3 1+5

6
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Theory of Pi Calculus

• The Pi calculus does not have the Church-Rosser 
property
– Recall: WireTap | wire<M> | ATT !* NSA<M> | fiber<M>
– Also: WireTap | wire<M> | ATT !* WireTap | fiber<M>
– This captures the non-deterministic nature of 

concurrency

• For Pi-calculus there are
– Type systems
– Equivalences and logics
– Expressiveness results, through encodings of numbers, 

lists, procedures, objects
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Pi Calculus Applications
• A number of languages are based on Pi 

– e.g., Pict (Pierce and Turner)
• Specification and verification

– mobile phone protocols, security protocols
• Pi channels have nice built-in properties, such as:

– integrity
– confidentiality (with ν)
– exactly-once semantics
– mobility (channels as first-class values)

• These properties are useful in high-level descriptions 
of security protocols

• More detailed descriptions are possible in the spi 
calculus (= pi calculus + cryptography)
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A Typical Security Protocol

• Establishment and use of a secret channel:

• A and B are two clients
• S is an authentication server
• cAS and cBS are existing private channels with server
• cAB is a new channel for the clients

S

BA

• New channel cAB • Same new channel cAB

1. Data 

cAS cBS

cAB
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That Security Protocol in Pi

• That protocol is described as follows:
A(M)          = (ν cAB) cAS<cAB>. cAB <M>

S                = ! (cAS(x). cBS<x> | cBS(x). cAS<x>) 

B                = cBS(x). x(y). Work(y)

System(M) = (ν cAS)(ν cBS) A(M) | S | B

– Where Work(y) represents what B does with the 
message M (bound to y) that it receives

– The | cBS(x). cAS<x> makes the server symmetric
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Some Security Properties

• An authenticity property
– For all N, if B receives N then A sent N to B

• A secrecy property
– An outsider cannot tell System(M) apart from 

System(N), unless B reveals some part of A’s 
message

• Both of these properties can be formalized 
and proved in the Pi calculus

• The secrecy property can be treated via a 
simple type system
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Mainstream Languages

• Communication channels are not found in 
popular languages
– sockets in C are reminiscent of channels
– STREAMS (never used) are even closer
– ML has exactly what we’ve described (surprise)

• More popular is remote procedure call or (for 
OO languages) remote method invocation
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Concurrent ML
• Concurrent ML (CML) extends of ML with:

– threads
– typed channels
– pre-emptive scheduling
– garbage collection for threads and channels
– synchronous communication
– events as first-class values

• OCaml has it (Event, Thread), etc.
– “First-class synchronous communication. This module implements 

synchronous inter-thread communications over channels. As in John 
Reppy's Concurrent ML system, the communication events are first-
class values: they can be built and combined independently before 
being offered for communication.”
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Threads and Channels in CML

val spawn : (unit ! unit) ! thread (* create a new thread *)

val channel : unit ! ‘a chan (* create a new typed channel *)

val accept : ‘a chan ! ‘a (* message passing operations *)

val send : (‘a chan * ‘a) ! unit

So one can write, for example:
fun serverLoop () =  let request = accept recCh in
                               send (replyCh, workOn request);
                               serverLoop ()
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Basic Events in Concurrent ML
val sync  : ‘a event ! ‘a (* force synchronization on an event, block 

until this communication succeeds *)

val transmit : (‘a chan * ‘a) ! unit event (* nonblocking; promises 
to do the send at some point *)

val receive : ‘a chan ! ‘a event (* sets up the rendezvous, but you 
don’t actually get the value until you sync *)

val choose : ‘a event list ! ‘a event (* succeeds when one of the 
events in the list succeeds *) 

val wrap : (‘a event * (‘a ! ‘b)) ! ‘b event (* do an action after 
synchronization on an event *)

So you can write, as in Unix syscall select(2):
select (mylist : ‘a event list) : ‘a = sync (choose mylist) 
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Java Remote Method Invocation
• Java RMI is a Java extension with

– Java method invocation syntax
– similar semantics
– static checks
– distributed garbage collection
– exceptions for failures
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RMI notes

• Compare RMI with pure message passing
– RMI is weaker, but OK for many purposes

• RMI not a perfect fit into Java:
– non-remote objects are passed by copy in RMI
– clients use remote interfaces, not remote classes
– clients must handle RemoteException
– using same syntax for MI and RMI leads to hidden 

performance costs

• But it is not an unreasonable design!
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Homework
• Project 

– Need help? Stop by my office or send email.


