Recursive Types and Subtyping

Xy
7

WS,

Recursive Types: Lists

« We want to define recursive data structures
e Example: lists

- A list of elements of type T (a 1 list) is either empty or it
is a pair of atand a T list

T list = unit + (T x T list)
- This is a recursive equation. We take its solution to be
the smallest set of values L that satisfies the equation
L={"}U (T xL)
where T is the set of values of type 1

- Another interpretation is that the recursive equation is
taken up-to (modulo) set isomorphism

H#H2

Recursive Types

e We introduce a recursive type constructor g (mu):
ME. T

The type variable t is bound in 1
This stands for the solution to the equation
t~1 (tisisomorphic with 1)
Example: T list = pt. (unit + T x t)
This also allows “unnamed” recursive types
« We introduce syntactic (sugary) operations for the
conversion between pt.t and [ut.t/t]t
e e.g. between “t1 list” and “unit + (t x 1 list)”
e:l=.. | fold ., e [unfold . e
T:= ...

| | pt.t

H#3

Example with Recursive Types

o Lists
T list = ut. (unit + T x t)
nil_ = fold_ . (injl *)
cons. = AXT.AL:t list. fold_ . injr (x, L)

A list length function
length, = AL:T list.

case (unfold_ .. L) of injlx= 0

T list
| injry = 1 + length_ (snd y)
e (At home ...) Verify that
- nil, : T list
- cons. T —Tlist — 1 list

- length_: 1 list — int

HA4

Type Rules for Recursive Types
[Fe:ut.T

"= unfold,; r e : [ut.7/t]T

e [pt.T/t]T
[foldysr e pt.7

e The typing rules are syntax directed

e Often, for syntactic simplicity, the fold and
unfold operators are omitted

- This makes type checking somewhat harder

H#H5

Dynamics of Recursive Types

e We add a new form of values
vi=..|fold, Vv

- The purpose of fold is to ensure that the value has
the recursive type and not its unfolding

e The evaluation rules:
el v el fold,;.r v

\4

fold,;.r e | fold,; v unfoldysr el v

Y

e The folding annotations are for type checking only
e They can be dropped after type checking

H#H6

Recursive Types in ML

The language ML uses a simple syntactic trick to
avoid having to write the explicit fold and unfold

In ML recursive types are bundled with union types
typet=C, oft, | C,of1, | ... | C of T,
(* t can appear in T, *)
- e.g., “type intlist = Nil of unit | Cons of int * intlist”
When the programmer writes Cons (5,)
- the compiler treats it as fold. ... (injr (5, 1))

When the programmer writes

- caseeof Nil= ... | Cons (h, t) = ...

the compiler treats it as

- case unfold, ... e of Nil = ... | Cons (h,t) = ...

H7

Encoding Call-by-Value
A-calculus in F*

« S0 far, F, was so weak that we could not
encode non-terminating computations
- Cannot encode recursion
- Cannot write the Ax.x x (self-application)

e The addition of recursive types makes typed
A-calculus as expressive as untyped A-
calculus!

e We could show a conversion algorithm from
call-by-value untyped A-calculus to call-by-

value FH

H#H8

Untyped Programming in F_*

We write e for the conversion of the term e to F *
- ThetypeofeisV=put. t >t

The conversion rules

X =X

Ax. e =fold, (Ax:V. e)

e, &, =(unfold, e,)e,

Verify that

- -Fe:V

- elvifandonlyif e v

We can express non-terminating computation

D = (unfold, (fold, (Ax:V. (unfold, x) x))) (fold, (Ax:V. (unfold, x) x)))

or, equivalently

D = (Ax:V. (unfold, x) x) (fold, (Ax:V. (unfold, x) x)))
#9

Smooth Transition

e And now, on to subtyping ...

H#10

Introduction to Subtyping

 We can view types as denoting sets of values

e Subtyping is a relation between types induced by the
subset relation between value sets

e Informal intuition:

If Tis a subtype of o then any expression with type t also
has type o (e.8., Z C R, 1€Z = 1€R)

If Tis a subtype of o then any expression of type 1 can be
used in a context that expects a o

We write 1 < 0 to say that 1 is a subtype of o
Subtyping is reflexive and transitive

H#11

Cunning Plan For Subtyping

* Formalize Subtyping Requirements
- Subsumption

e Create Safe Subtyping Rules
- Pairs, functions, references, etc.
- Most easy thing we try will be wrong

* Subtyping Coercions
- When is a subtyping system correct?

H#12

Subtyping Examples

e FORTRAN introduced int < real
- 5+ 1.5 is well-typed in many languages

e PASCAL had [1..10] < [0..15] < int

e Subtyping is a fundamental property of
object-oriented languages

- If S is a subclass of C then an instance of S can be
used where an instance of C is expected

- “subclassing = subtyping” philosophy

#13

Subsumption

e Formalize the requirements on subtyping

e Rule of subsumption
- If T < 0 then an expression of type 1 has type o

| Fe.:T T<oO
| Fe:o

* But now type safety may be in danger:
o If we say that int < (int — int)
 Then we can prove that “5 5” is well typed!

 There is a way to construct the subtyping relation to
preserve type safety

#14

TTTTTTTTTT

| ut o NS . |
; S @
[} _—)
DUNND,
"*’ ‘"‘”
w
1

N
b O €0

q = = f
“— iy | ;

THERE WAS SINGING, Y
AND THERE WAS SCME aUY WHC X/
WNAS TRYING TC WIN A GIRL, BUT v
HER FAMILY WANTED HER TO
. MARRY SOMECONE ELSE.

"IT WAS THE EPISODE OF
LASS/E WHERE TIMMY IS IN
TROUBLE BUT THE DCe
SAVES HIM."

LOCK, WHATEVER.

| DON'T REALLY

7 "\ KNOW THE GENRE.
a i ; 4

‘\-1-..‘-

»
O .

wmrren oy MATT BOYD #1999 www. MACHALL.COM

—— i
A 'I'?‘(‘;Q-:;f
~ aRT Y) T &-s-03

Subtyping in POPL
and PLDI 2005

o A simple typed
intermediate language
for object-oriented
languages

* Checking type safety of
foreign function calls

\ o Essential language

support for generic
programming

» Semantic type qualifiers

e Permission-based
ownership

* ... (out of space on slide)

#15

Defining Subtyping

The formal definition of subtyping is by derivation
rules for the judgment t <o

We start with subtyping on the base types

- e.g. int<real or nat<int

- These rules are language dependent and are typically
based directly on types-as-sets arguments

We then make subtyping a preorder (reflexive and
transitive)

T < To To< T3
T T T < 73

Then we build-up subtyping for “larger” types

#16

Subtyping for Pairs

T O T'<a’

'T><T’<c7><0’

 Show (informally) that whenever a s x s’ can be used, a
t x t’ can also be used:

e Consider the context H = H’[fst o] expectinga s x s’
 Then H’ expects a s
 Because t <s then H’ accepts a t
e Takee : t xt’. Then fst e : t so it works in H’
e Thus e works in H
 The case of “snd e” is similar

oTry

H#17

Subtyping for Records

o Several subtyping relations for records
* Depth subtyping

, /
T; <T,L-

{1 :71,...,n:m } < {ll:fr{,...,ln:fr,,’l}
e e.g., {f1=1int, f2 =int} < {f1 =real, f2 = int}
o Width subtyping

n>m

{171, - s ln it} <AL 71,y lm i }

E.g., {f1 =int, f2 = int} < {f2 = int}
Models subclassing in OO languages

 Or, a combination of the two

#18

Subtyping for Functions
r<o T <o

'7'4>7"<04>0’

Example Use:
rounded_sqrt R > Z
actual_sqrt R—-R
Since Z < R, rounded_sqrt < actual_sqrt
So if | have code like this:
float result = rounded sqrt(5); // 2
... | can replace it like this:
float result = actual sqrt(5); // 2.23
... and everything will be fine.

#19

Subtyping for Functions

T < 0 7-, < O', What do you
think of this

r7<o—0o rue

AT A8 O00%
g

#20

Subtyping for Functions
r<o T <o

7'4>7"<c74>0’

e This rule is unsound
- Let =f:int — bool (and assume int < real)
- We show using the above rule that ' - f 5.0 : bool
- But this is wrong since 5.0 is not a valid argument of f

int < real Dbool < bool
[- f:int — bool int — bool < real — bool

[= f:real — bool [5.0 :real
[- f5.0:bool

H#21

Correct Function Subtyping

o<t 7<d

T 1< o — o

 We say that — is covariant in the result type and
contravariant in the argument type

o Informal correctness argument:
e Pickf:1— 1’
f expects an argument of type 1
It also accepts an argument of type 0 < 1
f returns a value of type 1’
Which can also be viewed as a ¢’ (sincet’ < 0’)
Hence f can be used as 0 — o’

H22

More on Contravariance

e Consider the subtype relationships:
int — real

/\.

real — real int — int

=

real — int

* In what sense (f € real — int) = (f € int — int) ?
o “real — int” has a larger domain!
o (recall the set theory (arg,result) pair encoding for functions)

o This suggests that “subtype-as-subset” interpretation is
not straightforward
o We’ll return to this issue (after these commercial messages ...)

#23

Subtyping References

e Try covariance < o

Wrong!

T ref < o ref

Example: assume 1< 0
The following holds (if we assume the above rule):

X:o,y:tref,f:1t>intky:=x;f(ly)
Unsound: f is called on a o but is defined only on T
Java has covariant arrays!
 |f we want covariance of references we can recover
type safety with a runtime check for each y := x
- The actual type of x matches the actual type of y
- But this is generally considered a bad design

#24

Subtyping References (Part 2)

e Contravariance?
T O

Also Wrong!
o ref < 7 ref

- Example: assumet <o
- The following holds (if we assume the above rule):
X:o,y:oref,f:t—=>intky:=x;f(ly)
- Unsound: f is called on a o but is defined only on t
e References are invariant

- No subtyping for references (unless we are prepared to
add run-time checks)

- hence, arrays should be invariant
- hence, mutable records should be invariant

H#25

Subtyping Recursive Types

Recall T list = pt.(unit + Txt)
- We would like T list < o list whenever 1 < o

° ?
Covariance? T < O

Wrong!

ut.m < ut.o
This is wrong if t occurs contravariantly in T
Take 1 = pt.t—int and o = pt.t—real
Above rule says that T < o
We have 1~1—int and o~oc—real
1<0 would mean covariant function type!
How can we get safe subtyping for lists?

H#26

Subtyping Recursive Types
t < s

\

Means assume t < s
> and use that to
prove 1 < 0

The correct rule

<o B
ut. T < us.o

We add as an assumption that the type variables
stand for types with the desired subtype relationship

- Before we assumed they stood for the same type!
Verify that now subtyping works properly for lists

There is no subtyping between pt.t—int and p
t.t—real (recall:

T O
ut.m < ut.o

Wrong!

H#H27

Conversion Interpretation

 The subset interpretation of types leads to an
abstract modeling of the operational behavior

- e.g., we say int < real even though an int could not be
directly used as a real in the concrete x86
implementation (cf. IEEE 754 bit patterns)

- The int needs to be converted to a real

 We can get closer to the “machine” with a
conversion interpretation of subtyping

- We say that T < 0 when there is a conversion function
that converts values of type 1 to values of type o

- Conversions also help explain issues such as
contravariance

- But: must be careful with conversions

#28

Conversions

o Examples:
- nat < int with conversion AX.x
- int < real with conversion 2’s comp — |EEE

* The subset interpretation is a special case
when all conversions are identity functions
e Write “1 < 0 = (C(1, 0)” to say that C(t,0) is
the conversion function from subtype t to o
- If C(t, o) is expressed in F, then C(1,0) :1— 0O

#29

Issues with Conversions

e Consider the expression “printreal 1” typed as follows:

1l :int dint < real

printreal : real — unit 1l : real

printreal 1 : unit

we convert 1 to real: printreal (C(int,real) 1)
 But we can also have another type derivation:

printreal ! real — unit real — unit < int — unit

printreal ! int — unit 1:int

printreal 1 : unit
with conversion “(C(real -> unit, int -> unit) printreal) 1”
* Which one is right? What do they mean?

#30

Introducing Conversions

 We can compile a language with subtyping into one
without subtyping by introducing conversions
 The process is similar to type checking
[Fe:T=¢
- Expression e has type 1 and its conversion is e

* Rules for the conversion process:
'Ferim—=>7=e1 [Fexim=en

|_|—€1€22T:>€_1€_2

[Fe:T7T=e T7T<o0o=C(1,0)
[Fe:o=C(r,0)e

H#31

Coherence of Conversions

e Questions and Concerns:

- Can we build arbitrary subtype relations just because we
can write conversion functions?

- Is real < int just because the “floor” function is a
conversion?

- What is the conversion from “real—int” to “int—int”?
e What are the restrictions on conversion functions?

* A system of conversion functions is coherent if
whenever we have T < T’ < 0 then

e C(T, 1) = AX.X
e C(1,0) =C(t’, 0) o C(t, T’) (= composed with)
o Example: if b is a bool then (float)b == (float)((int)b)

- otherwise we end up with confusing uses of subsumption

#32

Example of Coherence

 We want the following subtyping relations:
- int < real = Ax:int. tolEEE x
- real < int = Ax:real. floor x

e For this system to be coherent we need
- C(int, real) o C(real, int) = AX.x, and
- C(real, int) o C(int, real) = Ax.x

e This requires that

—Vx : real . (tolEEE (floor x) = x)
- which is not true

#33

Building Conversions

 We start from conversions on basic types

T T= Ax . T.¢
™ < T = O(Tl,TQ) T < T3 = C(TQ,T?,)

1 < 13 = C(72,73) 0 C(11,72)
T1<O‘1:>C(T1,0'1) 7‘2<O‘2:>C(T2,0'2)

MIXm<orXox=>Ax .1 X m.(C(m1,01)(fst(x)),C(1,02)(snd(x)))

TILX T < TL= Ax .71 X ™. fst(x)

o1 <11 =C(c1,711) 1 <ox=C(m,o02)

TM— T <01 —=0=>A 1711 =1 Ae:or. C(rm,o)(f(C(or,m1)(x)))

#34

Comments

o With the conversion view we see why we do not
necessarily want to impose antisymmetry for
subtyping

- Can have multiple representations of a type

- We want to reserve type equality for representation
equality

- 1< T and also t’ < T (are interconvertible) but not
necessarily 1 =1’

- e.g., Modula-3 has packed and unpacked records

o We’ll encounter subtyping again for object-oriented
languages

- Serious difficulties there due to recursive types

H#35

Homework

 How's that project going?

H#36

