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Recursive Types: Lists
• We want to define recursive data structures 
• Example: lists

– A list of elements of type τ (a τ list) is either empty or it 
is a pair of a τ and a τ list

τ list = unit + (τ £ τ list)
– This is a recursive equation. We take its solution to be  

the smallest set of values L that satisfies the equation
L = { * } [ (T £ L)  

where T is the set of values of type τ

– Another interpretation is that the recursive equation is 
taken up-to (modulo) set isomorphism
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Recursive Types
• We introduce a recursive type constructor µ (mu):

µt. τ 
– The type variable t is bound in τ
– This stands for the solution to the equation

t ' τ     (t is isomorphic with τ)
– Example: τ list = µt. (unit + τ £ t)
– This also allows “unnamed” recursive types

• We introduce syntactic (sugary) operations for the 
conversion between µt.τ and [µt.τ/t]τ 

• e.g. between “τ list” and “unit + (τ £ τ list)”
e ::= … | foldµt.τ e | unfoldµt.τ e 

     τ ::= … | t | µt.τ
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Example with Recursive Types
• Lists

 τ list = µt. (unit + τ £ t)
 nilτ = foldτ list (injl *)

 consτ = λx:τ.λL:τ list. foldτ list injr (x, L)

• A list length function
lengthτ = λL:τ list. 

case (unfoldτ list L) of   injl x ) 0

       | injr y ) 1 + lengthτ (snd y)

• (At home …) Verify that
– nilτ       : τ list

– consτ    : τ ! τ list ! τ list
– lengthτ : τ list ! int
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Type Rules for Recursive Types

• The typing rules are syntax directed
• Often, for syntactic simplicity, the fold and 

unfold operators are omitted
– This makes type checking somewhat harder
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Dynamics of Recursive Types
• We add a new form of values

v ::= … | foldµt.τ v

– The purpose of fold is to ensure that the value has 
the recursive type and not its unfolding

• The evaluation rules:

• The folding annotations are for type checking only
• They can be dropped after type checking
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Recursive Types in ML
• The language ML uses a simple syntactic trick to 

avoid having to write the explicit fold and unfold
• In ML recursive types are bundled with union types

type t = C1 of τ1 | C2 of τ2 | ... | Cn of τn                                          

                      (* t can appear in τ i *)
– e.g., “type intlist = Nil of unit | Cons of int * intlist”

• When the programmer writes Cons (5, l)
– the compiler treats it as              foldintlist (injr (5, l))

• When the programmer writes
– case e of Nil ) ... | Cons (h, t) ) ... 
the compiler treats it as
– case unfoldintlist e of Nil ) ... | Cons (h,t) ) ...



#8

Encoding Call-by-Value 
λ-calculus in F1

µ

• So far, F1 was so weak that we could not 
encode non-terminating computations
– Cannot encode recursion
– Cannot write the λx.x x   (self-application)

• The addition of recursive types makes typed 
λ-calculus as expressive as untyped λ-
calculus!

• We could show a conversion algorithm from 
call-by-value untyped λ-calculus to call-by-
value F1

µ
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Untyped Programming in F1
µ

• We write e for the conversion of the term e to F1
µ

– The type of e is V = µt. t ! t
• The conversion rules

x         = x
λx. e   = foldV (λx:V. e)
e 1  e 2   = (unfoldV e 1) e 2

• Verify that 
–  ¢ ` e : V
– e ⇓ v if and only if e ⇓ v

• We can express non-terminating computation
D = (unfoldV (foldV (λx:V. (unfoldV x) x))) (foldV (λx:V. (unfoldV x) x)))
or, equivalently
D = (λx:V. (unfoldV x) x) (foldV (λx:V. (unfoldV x) x)))
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Smooth Transition

• And now, on to subtyping ...
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Introduction to Subtyping

• We can view types as denoting sets of values
• Subtyping is a relation between types induced by the 

subset relation between value sets
• Informal intuition:

– If τ is a subtype of σ then any expression with type τ also 
has type σ (e.g., Z µ R, 12Z ) 12R) 

– If τ is a subtype of σ then any expression of type τ can be 
used in a context that expects a σ

– We write τ < σ to say that τ is a subtype of σ
– Subtyping is reflexive and transitive 
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Cunning Plan For Subtyping

• Formalize Subtyping Requirements
– Subsumption

• Create Safe Subtyping Rules
– Pairs, functions, references, etc. 
– Most easy thing we try will be wrong

• Subtyping Coercions
– When is a subtyping system correct?
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Subtyping Examples

• FORTRAN introduced int < real
– 5 + 1.5 is well-typed in many languages

• PASCAL had [1..10] < [0..15] < int

• Subtyping is a fundamental property of 
object-oriented languages
– If S is a subclass of C then an instance of S can be 

used where an instance of C is expected
– “subclassing ) subtyping” philosophy
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Subsumption
• Formalize the requirements on subtyping
• Rule of subsumption

– If τ < σ then an expression of type τ has type σ

• But now type safety may be in danger:
• If we say that int < (int ! int)
• Then we can prove that “5 5” is well typed!

• There is a way to construct the subtyping relation to 
preserve type safety
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Subtyping in POPL 
and PLDI 2005

• A simple typed 
intermediate language 
for object-oriented 
languages

• Checking type safety of 
foreign function calls

• Essential language 
support for generic 
programming

• Semantic type qualifiers
• Permission-based 

ownership
• … (out of space on slide)
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Defining Subtyping

• The formal definition of subtyping is by derivation 
rules for the judgment τ < σ

• We start with subtyping on the base types
– e.g.   int < real   or   nat < int
– These rules are language dependent and are typically 

based directly on types-as-sets arguments
• We then make subtyping a preorder (reflexive and 

transitive)

• Then we build-up subtyping for “larger” types
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Subtyping for Pairs

• Try

• Show (informally) that whenever a s £ s’ can be used, a 
t £ t’ can also be used:

• Consider the context H = H’[fst ²] expecting a s £ s’
• Then H’ expects a s
• Because t < s then H’ accepts a t
• Take e : t £ t’. Then fst e : t so it works in H’
• Thus e works in H

• The case of “snd ²” is similar
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Subtyping for Records
• Several subtyping relations for records
• Depth subtyping

• e.g., {f1 = int, f2 = int} < {f1 = real, f2 = int}

• Width subtyping

• E.g., {f1 = int, f2 = int} < {f2 = int}
• Models subclassing in OO languages

• Or, a combination of the two
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Subtyping for Functions

Example Use: 
  rounded_sqrt : R ! Z 
  actual_sqrt : R ! R
Since Z < R, rounded_sqrt < actual_sqrt
So if I have code like this: 

float result = rounded_sqrt(5); // 2
… I can replace it like this: 

float result = actual_sqrt(5); // 2.23
… and everything will be fine. 
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Subtyping for Functions
• What do you 

think of this 
rule? 
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Subtyping for Functions

• This rule is unsound
– Let Γ = f : int ! bool   (and assume int < real)
– We show using the above rule that Γ ` f  5.0 : bool
– But this is wrong since 5.0 is not a valid argument of f
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Correct Function Subtyping

• We say that ! is covariant in the result type and 
contravariant in the argument type

• Informal correctness argument:
• Pick f : τ ! τ’
• f expects an argument of type τ
• It also accepts an argument of type σ < τ
• f returns a value of type τ’
• Which can also be viewed as a σ’ (since τ’ < σ’)
• Hence f can be used as σ ! σ’
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More on Contravariance
• Consider the subtype relationships:

int ! real

real ! int

real ! real int ! int

• In what sense (f 2 real ! int) ) (f 2 int ! int) ?
• “real ! int” has a larger domain! 
• (recall the set theory (arg,result) pair encoding for functions)

• This suggests that “subtype-as-subset” interpretation is 
not straightforward
• We’ll return to this issue (after these commercial messages …)
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Subtyping References
• Try covariance

– Example: assume τ < σ
– The following holds (if we assume the above rule): 

x : σ, y : τ ref, f : τ ! int ` y := x; f (! y)
– Unsound: f is called on a σ but is defined only on τ
– Java has covariant arrays!  

• If we want covariance of references we can recover 
type safety with a runtime check for each y := x
– The actual type of x matches the actual type of y
– But this is generally considered a bad design
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Subtyping References (Part 2)
• Contravariance?

– Example: assume τ < σ
– The following holds (if we assume the above rule): 

x : σ, y : σ ref, f : τ ! int ` y := x; f (! y)
– Unsound: f is called on a σ but is defined only on τ

• References are invariant
– No subtyping for references (unless we are prepared to 

add run-time checks)
– hence, arrays should be invariant
– hence, mutable records should be invariant
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Subtyping Recursive Types

• Recall τ list = µt.(unit + τ£t)
– We would like τ list < σ list whenever τ < σ

• Covariance?

• This is wrong if t occurs contravariantly in τ
• Take τ = µt.t!int and σ = µt.t!real
• Above rule says that τ < σ
• We have τ'τ!int and σ'σ!real
•  τ<σ would mean covariant function type!
• How can we get safe subtyping for lists?
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Subtyping Recursive Types

• The correct rule

• We add as an assumption that the type variables 
stand for types with the desired subtype relationship
– Before we assumed they stood for the same type!

• Verify that now subtyping works properly for lists
• There is no subtyping between µt.t!int and µ

t.t!real (recall:

Means assume t < s 
and use that to 

prove τ < σ
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Conversion Interpretation
• The subset interpretation of types leads to an 

abstract modeling of the operational behavior
– e.g., we say int < real even though an int could not be 

directly used as a real in the concrete x86 
implementation (cf. IEEE 754 bit patterns)

– The int needs to be converted to a real 

• We can get closer to the “machine” with a 
conversion interpretation of subtyping
– We say that τ < σ when there is a conversion function 

that converts values of type τ to values of type σ
– Conversions also help explain issues such as 

contravariance
– But: must be careful with conversions  
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Conversions

• Examples:
– nat < int  with conversion λx.x
– int < real with conversion 2’s comp ! IEEE 

• The subset interpretation is a special case 
when all conversions are identity functions

• Write “τ < σ ) C(τ, σ)” to say that C(τ,σ) is 
the conversion function from subtype τ to σ
– If C(τ, σ) is expressed in F1 then  C(τ,σ)  : τ ! σ
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Issues with Conversions
• Consider the expression “printreal 1” typed as follows:

     we convert 1 to real: printreal (C(int,real) 1)
• But we can also have another type derivation:

  with conversion “(C(real -> unit, int -> unit) printreal) 1”
• Which one is right? What do they mean? 
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Introducing Conversions
• We can compile a language with subtyping into one 

without subtyping by introducing conversions
• The process is similar to type checking

Γ ` e : τ ) e
– Expression e has type τ and its conversion is e

• Rules for the conversion process:
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Coherence of Conversions
• Questions and Concerns:

– Can we build arbitrary subtype relations just because we 
can write conversion functions?

– Is real < int just because the “floor” function is a 
conversion?

– What is the conversion from “real!int” to “int!int”?

• What are the restrictions on conversion functions?  
• A system of conversion functions is coherent if 

whenever we have τ < τ’ < σ then
• C(τ, τ) = λx.x
• C(τ,σ) = C(τ’, σ)  C(τ, τ’)  (= composed with)
• Example: if b is a bool then (float)b == (float)((int)b)

– otherwise we end up with confusing uses of subsumption
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Example of Coherence
• We want the following subtyping relations:

– int < real ) λx:int. toIEEE x
– real < int ) λx:real. floor x

• For this system to be coherent we need
– C(int, real)  C(real, int) = λx.x, and
– C(real, int)  C(int, real) = λx.x

• This requires that 
– 8x : real . ( toIEEE (floor x) = x )
– which is not true
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Building Conversions
• We start from conversions on basic types
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Comments
• With the conversion view we see why we do not 

necessarily want to impose antisymmetry for 
subtyping
– Can have multiple representations of a type
– We want to reserve type equality for representation 

equality
–  τ < τ’ and also τ’ < τ (are interconvertible) but not 

necessarily τ = τ’
– e.g., Modula-3 has packed and unpacked records

• We’ll encounter subtyping again for object-oriented 
languages
– Serious difficulties there due to recursive types
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Homework

• How's that project going? 


