Monomorphic Type Systems

A

o

?\-"05‘/
Py Ir{lff/’

i ¥ =
*’ff ”\i”‘

HOW CAN SOMETHING SEEM
S0 PLAUSIBLE AT THE TIME

AND S0 IDIOTIC N
RETROSPECT ? ./

',.F"

Type Soundness for F,
“Whatdoes
-Theorém: If . Fe:T andelvthen-Fv:T

- Also called, subject reduction theorem, type
preservation theorem

e This is one of the most important sorts of
theorems in PL

 Whenever you make up a new safe language
you are expected to prove this

- Examples: Vault, TAL, CCured, ...

H#H2

How Might We Prove It?

e Theorem: If -Fe:1T andeldvthen-Fv:T

{ STEAMING HoT
 DARK MATTER 5JJ
o —

o N N

" SUPERDUPERGIMMETRIC
S5TRidG THEORY

Proof Approaches To Type Safety

Theorem: If --e:1 ande Jvthen -Fv:T

Try to prove by induction on e

- Won’t work because [v,/x]e’, in the evaluation of e, e,
- Same problem with inductionon - e : 1

Try to prove by induction on 1

- Won’t work because e, has a “bigger” type than e, e,
Try to prove by induction on e v

- To address the issue of [v,/x]e’,

- This is it!

HA4

Type Soundness Proof

Consider the function application case

. e1 U Az 706l ex vy [up/zle] Yo
) e; ex v
and by inversion on the derivation of ejes T

p--°|_€1172_>7 -Fex i

°|—€1€22T
FromIHone [O..wehave . x:1,Fe’ T

FromIHone, [J...wehave-Fv,:T,

Need to infer that - I [v,/x]e,” : T and use the IH
- We need a substitution lemma (by induction on e,’)

H#H5

Significance of Type Soundness

The theorem says that the result of an evaluation
has the same type as the initial expression
The theorem does not say that

- The evaluation never gets stuck (e.g., trying to apply a
non-function, to add non-integers, etc.), nor that

- The evaluation terminates
Even though both of the above facts are true of F,

What formal system of semantics do we use to
reason about programs that might not terminate?

H#H6

Significance of Type Soundness

The theorem says that the result of an evaluation
has the same type as the initial expression
The theorem does not say that

- The evaluation never gets stuck (e.g., trying to apply a
non-function, to add non-integers, etc.), nor that

- The evaluation terminates
Even though both of the above facts are true of F,

We need a small-step semantics to prove that the
execution never gets stuck

| Assert: the execution always terminates in F,
- When does the base lambda calculus ever not terminate?

H7

Small-Step Contextual Semantics
for F,

We define redexes
r::=n,+n, | if bthene, else e, | (AX:T.€,) V,

and contexts

H::=H,+e, |n +H, | if H then e, else e,
| H, e, | (Ax:T. e,) H, | o
and local reduction rules
n, +n, — n, plus n,
if true then e, else e, — €,
if false then e, else e, — €,
(AX:T. €,) V, — [v,/X]e,

and one global reduction rule
H[r] — H[e] iffr —e

H#H8

Decomposition Lemmas for F.

If -+ e : 1andeis not a (final) value then there
exist (unique) H and r such that e = H|r]

- any well typed expression can be decomposed

- any well-typed non-value can make progress

Furthermore, there exists T’ suchthat - +r: T

- the redex is closed and well typed

Furthermore, there exists e’ such that r — e’ and

Fe’ T

- local reduction is type preserving

Furthermore, for any e’, - e’ : T implies

- H[e’]: T

- the expression preserves its type if we replace the redex
with an expression of same type

H#O

Type Safety of F,

Type preservation theorem
-If-Fe:tande—e’then-Fe’:1

- Follows from the decomposition lemma
Progress theorem

- If - e : 1T and e is not a value then there exists e’ such
that e can make progress: e — e’

Progress theorem says that execution can make
progress on a well typed expression

From type preservation we know the execution of
well typed expressions never gets stuck

- This is a (very!) common way to state and prove type
safety of a language

#10

What’s Next?

o We’ve got the basic simply-typed
monomorphic lambda calculus

* Now let’s make it more complicated ...
e By adding features!

Product Types: Static Semantics

o Extend the syntax with (binary) tuples
e :=...|(e,e) |fste]snde

T = | T X,
- This language is sometimes called F*

e Same typing judgment [Fe: 1
|_|—€1:T1 |_|—€21T2

[(61,62) . T1 X T2

[Fe:mTqy X170 [Fe:itTy X1
[Ffste:m [msnde: 1

H#12

Dynamic Semantics and Soundness

« New form of values: v :ii=... | (v, V,)

 New (big step) evaluation rules:
erd vy ex o

(e1,e2) I (v1,v2)

el (v1,v2) el (vy,v2)

fst e | vy snd e |} vo

e New contexts: H:=...| (H,e) | (v,,H,) | fstH | sndH
 New redexes:

fst (v, V,) = vV,
snd (v, V,) =V,

* Type soundness holds just as before

#13

Q: General (454 / 842)

e |In traditional logic this is an
inference in which one
proposition (the conclusion)
necessarily follows from two
others (the premises). An
overused example is: "All men
are mortal. Socrates is a man.
Therefore, Socrates is a mortal.”

Q: General (473 / 842)

 Which of the following chemical
processes or reactions would be the
most difficult to conduct in a high
school chemistry lab?

- Hall-Heroult (Aluminum Extraction) Process
- Making Nitrocellulose (Guncotton)

- Making Slime

- Thermite Reaction (which reaches 5000(F))

Q: Games (534 / 842)

e Each face of this 1974 six-sided
plastic puzzle is subdivided into
nine smaller faces, each of
which can be one of six colors.

Q: Games (547 / 842)

* This viscoelastic silicone plastic
"clay” came out of efforts to find a
rubber substitute in World War Il. It
is now sold in plastic eggs as a toy
for children. It bounces and can
absorb the ink from newsprint. It
was also used by the crew of Apollo
8 to secure tools in zero gravity.

Q: Events (595 / 842)

o |[dentify 3 of the following 5 world
leaders based on the time and place
they came to power.

- France, May 7, 1995
- Haiti, December 16, 1990
- Russia, July 10, 1991
- Serbia, December 9, 1990
- South Africa, May 9, 1994

A: Events (595 / 842)

- Jacques Chirac

- Jean-Bertrand Aristide (ending three
decades of military rule)

- Boris Yeltsin (first elected president
of Russia)

- Slobodan Milosevic

- Nelson Mandela (South Africa's first
black president)

General PL Feature Plan

 The general plan for language feature design
e You invent a new feature (tuples)

e You add it to the lambda calculus

e You invent typing rules and opsem rules

* You extend the basic proof of type safety

e You declare moral victory, and milling throngs
of cheering admirers wait to carry you on
their shoulders to be knighted by the Queen,
etc.

#20

Records

Records are like tuples with labels (w00t!)
New form of expressions

ex=...|{L,=e, ..., L =€} | el
New form of values

vi={L =v, ..., L =v}
New form of types

Ta=...|{L 1 ..., L, :
... follows the model of F.*
- typing rules Sl
- derivation rules board!

- type soundness

Sum Types

 We need disjoint union types of the form:
- either an int or a float
- either 0 or a pointer
- either a (binary tree node with two children) or a (leaf)

« New expressions and types

e::=... |injle | injre |
case eof injlx —» e, | injry — e,
T:i=... |T,+T,

- Avalue of type 1, + 1, is either a1, or a T,

- Like union in C or Pascal, but safe
e distinguishing between components is under compiler control
- case is a binding operator (like “let”): x is bound in e,
and y is bound in e, (like OCaml’s “match ... with”)

H#H22

Examples with Sum Types

e Consider the type unit with a single element called *
or ()

e The type integer option defined as “unit + int”

- Useful for optional arguments or return values
e No argument: injl * (OCaml’s “None”)
e Argument is 5: injr 5 (OCaml’s “Some(5)”)
- To use the argument you must test the kind of argument
- case arg of injl x = “no_arg_case” | injry = “...y...”
- injl and injr are tags and case is tag checking

* bool is the union type “unit + unit”

- true is injl *
alse is injr *
- if ethen e, else e, iscaseeof injl x =€, | injry = ¢,

=—h

#23

Static Semantics of Sum Types

 New typing rules

|_|—€ZT1 |_|—€Z’T2
[Finjle: 74 + 7 [Finjre: 1 + ™

[Fep:m1+717 l,zo:mmbFe 7 Ty:imhker:T

[caseej of injlax = ¢ |injry=er: T

e Types are not unique anymore
injl 1 : int + bool
injl 1 :int + (int — int)
- this complicates type checking, but it is still doable

#24

Dynamic Semantics of Sum Types

 New values vi=...|linjlv | injrv
e New evaluation rules
el v el v

injle | injlv injre | injro

el injlov [v/x]e; | o/

case e of injlx = ¢; | injry = e, | v’

el injrv [v/yler § V'

case e of injl x = ¢; | injry = e | v/

#25

Type Soundness for F.*

e Type soundness still holds
« No way to use a 1, + T, inappropriately

e The key is that the only way touse a1, + 1, is
with case, which ensures that you are not
usingat,asart,

* In C or Pascal checking the tag is the
responsibility of the programmer!

- Unsafe

Types for Imperative Features

e So far: types for pure functional languages
 Now: types for imperative features

e Such types are used to characterize non-local
effects
- assignments
- exceptions
- typestate
» Contextual semantics is useful here
- Just when you thought it was safe to forget it ...

H#H27

Reference Types

e Such types are used for mutable memory cells
e Syntax (as in ML)
en=...|refe: 1| e, :=e, | le

T::=... | Tref

- ref e : T - evaluates e, allocates a new memory cell,
stores the value of e in it and returns the address of the

memory cell
 like malloc + initialization in C, or new in C++ and Java

- e, := e,, evaluates e, to a memory cell and updates its
value with the value of e,
- | e - evaluates e to a memory cell and returns its

contents
#28

Global Effects, Reference Cells

* A reference cell can escape the static scope
where it was created

(Af:int — int ref. I(f 5)) (Ax:int. ref x : int)

e The value stored in a reference cell must be
visible from the entire program

 The “result” of an expression must now
include the changes to the heap that it makes
(cf. IMP’s opsem)

e To model reference cells we must extend the
evaluation model

#29

Modeling References

e A heap is a mapping from addresses to values

h:=-]h,a«<vVv:T
- a € Addresses (Addresses # Z ?)
- We tag the heap cells with their types

- Types are useful only for static semantics. They are not
needed for the evaluation = are not a part of the
implementation

 We call a program an expression with a heap
p::=heaphine
- The initial program is “heap - in e”
- Heap addresses act as bound variables in the expression

- This is a trick that allows easy reuse of properties of
local variables for heap addresses

e e.g., we can rename the address and its occurrences at will

#30

Static Semantics of References

» Typing rules for expressions:

[Fe:T [Fe:Tref
[+ (refe:T):Tref M Hle: T

[Fey:7ref [Fex:T

[Fe{ :=eo ! unit
e and for programs
[Fv, . ;(i=1..n) Tke:T
~heap hine: T

where [= aq : 71 ref,...,an . ™ ref

and h =aj1 <+~ v1 :7T1,...,an < Un : Tn

#31

Contextual Semantics for
References

Addresses are values Vv .| a
New contexts: H ::=ref H | H —e2 la,:=H, | 'H

No new local reductlon rules

But some new global reduction rules
- heap hin H[ref v: 1] — heap h, a + v : 1in H[3]
* where a is fresh (this models allocation - the heap is extended)
- heap hin H[! a] — heap h in H[V]
e where a < v : T € h (heap lookup - can we get stuck?)
- heap h in H[a := v] — heap h[a < v] in H[*]
« where h[a <+ v] means a heap like h except that the part “a + v,
1”7 in h is replaced by “a < v : 1”7 (memory update)
Global rules are used to propagate the effects of a
write to the entire program (eval order matters!)

#32

Example with References

o Consider these (the redex is underlined)
- heap - in (Af:int — int ref. I(f 5)) (Ax:int. ref x :
int)
- heap - in I((Ax:int. ref x : int) 5)
- heap - in !(ref 5 : int)
-heapa=5_:intinla
-heapa=5:intinb
 The resulting program has a useless memory cell
* An equivalent result would be
heap - in 5
o This is a simple way to model garbage collection

H#33

Homework

e Read Wright and Felleisen article
- ... that you didn’t read on Tuesday.
- Or that optional Goodenough one ...

e Work on your projects! - o

5. DVICE-
SOCIALIST
REVOLUTION

