Simply-Typed |~ 4.
Lambda Calculus | & ¢

You guys are both my witnesses... He insinuated that
ZFC set theory is superior to Type Theory!

BEFORE GOING | { mewr.) || seaT mRUTS?
DOWN p. STEEP
HILL LIKE THIS, ‘1
O SHOAD L
BOHMS GWE | g

Hi% 5LED A é

The Reading

e Explain the Xavier Leroy article to me ...

The correctness of the translation follows from a simulation
arcument between the executions of the Cminor source and the
RTL translation, proved by induction on the Cminor evaluation
derivation. In the case of expressions, the simulation property is
summarized by the following diagram:

I'nP

sp, L,a, B, M sp.ns, B, M
IAQ v
sp, L,v, E', M" v ap g, R, M’

On the choice of semantics

We used big-step semantics

for the

source language, “mixed-step™ semantics for the intermediate lan-
cuages, and small-step semantics for the target language.
sequence of this choice is that our semantic preservation theorems
hold only for terminating source programs: they all have pi

A con-

e mises

of the form “if the source program evaluates to result »”

which

do not hold for non-terminating programs. This is unfortunate for

 How did he do register allocation?

#2

Homework Five Is Alive

e There will be no Number Six

Back to School

« What is operational semantics? When would
you use contextual (small-step) semantics?

« What is denotational semantics?

e What is axiomatic semantics? What is a
verification condition?

BECAUSE ITS COLD ICE WANTS [1S THAT | LOOK 1T UP AND || I SHoulD JWST | ou CAN

TO GET WARM, SO \WWQES | TRUE? FIND QUT. LOOK. STUFE UP | LEARN A 10T,

TO THE TOP OF LIQUIDS IN I THE FIRST | TALKIMG TO
ﬁ PLACE . ME .

ORDER To BE MEARER 1O

Today’s (Short?) Cunning Plan

e Type System Overview
e First-Order Type Systems

« Typing Rules

« Typing Derivations

» Type Safety

WHAT DOES MFU2
MEAN ON YOUR
TIMELINE?

wiwnardilberl.com scottadams® aol.oom

THAT'S MANAGEMENT
FOUL-UP NUMBER TLWIO.
IT USUALLY HAPPENS
AROUND THE THIRD

Lo

WEEK.

WE DONT ANTICIPATE
ANY MANAGEMENT
MISTAKES.

THAT™S |

o P00E Scott Adoms, Inc./DHsL by UES, Inc.

MFUL. |
ey \

Why Typed Languages?

e Development
- Type checking catches early many mistakes
- Reduced debugging time
- Typed signatures are a powerful basis for design
- Typed signatures enable separate compilation

e Maintenance
- Types act as checked specifications
- Types can enforce abstraction

e Execution

- Static checking reduces the need for dynamic checking

- Safe languages are easier to analyze statically
« the compiler can generate better code

#6

Why Not Typed Languages?

o Static type checking imposes constraints on the
programmer

- Some valid programs might be rejected
- But often they can be made well-typed easily

- Hard to step outside the language (e.g. OO programming
in a non-00 language, but cf. Ruby, OCaml, etc.)

e Dynamic safety checks can be costly
- 50% is a possible cost of bounds-checking in a tight loop
e In practice, the overall cost is much smaller

- Memory management must be automatic = need a
garbage collector with the associated run-time costs

- Some applications are justified in using weakly-typed
languages (e.g., by external safety proof)

#7

Safe Languages

e There are typed languages that are not safe
(“weakly typed languages”)

o All safe languages use types (static or dynamic)

Typed Untyped
Static Dynamic
Safe ML, Java, |Lisp, Scheme, Ruby, | A-calculus
Ada, C#, Perl, Smalltalk,
Haskell, ... PHP, Python, ...

. !e 'ocus on statlca"y type! |anguages

Properties of Type Systems

e How do types differ from other program
annotations?

- Types are more precise than comments

- Types are more easily mechanizable than program
specifications

o Expected properties of type systems:

- Types s
- Types s

nould

nould

- Typing rules s
 Should be easy to see why a program is not well-typed

e enforceable
be checkable algorithmically
nould be transparent

#9

Why Formal Type Systems?

e Many typed languages have informal
descriptions of the type systems (e.g., in
language reference manuals)

e A fair amount of careful analysis is required
to avoid false claims of type safety

e A formal presentation of a type system is a
precise specification of the type checker

- And allows formal proofs of type safety

e But even informal knowledge of the principles
of type systems help

#10

3

4

Formalizing a Language

. Syntax

e Of expressions (programs)

o Of types

e |ssues of binding and scoping

Static semantics (typing rules)

e Define the typing judgment and its derivation rules
. Dynamic semantics (e.g., operational)

e Define the evaluation judgment and its derivation rules
. Type soundness

e Relates the static and dynamic semantics
e State and prove the soundness theorem

#11

Typing Judgments

e Judgment (recall)
- A statement J about certain formal entities

- Has a truth value F J
- Has a derivation - J (= “a proof”)
e A common form of typing judgment:
[- e : T (eisan expression and T is a type)

e [(Gamma) is a set of type assignments for the free
variables of e

- Defined by the grammarl ::=- | [, X : T
- Type assighments for variables not free in e are not
relevant

- e.g, x:int,y:intk x+y:int v

Typing rules

» Typing rules are used to derive typing
judgments

 Examples: I F1:int

r.1T7 €[
[Fx T

[Feq:int [Feo:int
[Fe1 +eo:int

#13

Typing Derivations

e A t?(ping derivation is a derivation of a typing
judgment (big surprise there ...)

e Example:

z.intkFx:int 2 :intF 1: int
x . int F z : int x . intkF x4+ 1 : int
rz:.intFx+ (z+1): int

e« Wesay [l - e : 1tomean there exists a derivation of
this typing judgment (= “we can prove it”)
» Type checking: given I, e and T find a derivation

» Type inference: given I and e, find T and a
derivation

#14

Proving Type Soundness

A typing judgment is either true or false
Define what it means for a value to have a type
ve | T|
(e.g. 5 € | int || and true € || bool ||)

Define what it means for an expression to have a
type

eec |1| iff Vv.(eOv=vel|T])
Prove type soundness
If -Fe:T thenee | 1|
or equivalently
If - Fe:tandelv thenve |t

This implies safe execution (since the result of a

unsafe execution is not in || T || for any 1) s

Upcoming Exciting Episodes

 We will give formal description of first-order type
systems (no type variables)
- Function types (simply typed A-calculus)
Simple types (integers and booleans)
Structured types (products and sums)
Imperative types (references and exceptions)
Recursive types (linked lists and trees)

e The type systems of most common languages are
first-order

 Then we move to second-order type systems
- Polymorphism and abstract types

#16

Q: Movies (378 / 842)

e This 1988 animated movie written
and directed by Isao Takahata for
Studio Ghibli was considered by
Roger Ebert to be one of the most
powerful anti-war films ever made.
It features Seita and his sister
Setsuko and their efforts to survive
outside of society during the
firebombing of Tokyo.

Q: General (468 / 842)

e This country's automobile
stickers use the abbreviation CH
(Confederatio Helvetica). The
1957 Max Miedinger typeface
Helvetica is also named for this
country.

Q: Games (504 / 842)

e This 1985 falling-blocks
computer game was invented by
Alexey Pajitnov (Anekcen
[TaxkuTHOB) and inspired by
pentominoes.

Simply-Typed Lambda Calculus
e Syntax:

Terms e::= X AX:T.e | e e
| n e +e, iszero e

| true false not e
if e, then e, else e,

Types Tt :=int| bool | T, = T,
e T, — T, is the function type
e — associates to the right

o Arguments have typing annotations :1
o This language is also called F.

#20

Static Semantics of F,
e The typing judgment

[Fe: T
e Some (simpler) typing rules:
v Tl I_,:L':Tl—e:'r’
(o7 Xz :Te:T7— 7/

| Fei i —=7 | Fes:to

[€1 . T

#21

More Static Semantics of F.
[ey :int [Feos:int

[= n:int [Fe1 +eo:int

Why do we have this mysterious gap? | don’t know either!

[e : bool
[F true : bool [- not e : bool

[Feqibool [Fei7 [hepiT

[~ 1if e; theneselseey ! T

#22

Typing Derivation in F,

e Consider the term
AX :int. Ab : bool. if b then f x else x
- With the initial typing assignment f : int — Int

- Where " =f :int — int, x : int, b : bool
[Ff:int —int [Fx:int
[+ b: bool [+ fx:int [+ ax: int

f int — int,x : int,b : bool - if b then f x else x . int

f iint — int,x : int - Ab : bool. if b then f x else x : bool — int

S iint — int F Az ! int.Ab ! bool. if b then [x else x,! int — bool — int

l

#23

Type Checking in F.

« Type checking is easy because | ,’;f-?:

- Typing rules are syntax directed Seea U tYTeronIHWRL RO S0.nakd
- Typing rules are compositional (what does this mean?)

- All local variables are annotated with types

o In fact, type inference is also easy for F,

o Without type annotations an expression may have no
unique type

. AX. X :int — Int

- = AX. X : bool — bool

#24

Operational Semantics of F,

e Judgment:

e Values:
v:i:=n | true | false | Ax:1. e

e The evaluation rules ...

- Audience participation time: raise your hand and
give me an evaluation rule.

#25

e1 I Az : T.e'l

Opsem of F, (Cont.)

- Call-by-value evaluation rules (sample)

Ax iT.ell AxiTeE

eo | vo

O

[vo/x]e] U v

O

Where is the
Call-By-Value?
How might we

e1 en v

e1 dny exlno

n=mni+ no

change it?

nin

€1

e1 | true

es> I n

er | v

if e; then e; else ey | v

e1 { false

er v

if e; then egelse ey v

Evaluation is
undefined for ill-
typed programs !

#26

Type Soundness for F,

e Theorem: If - Fe:1T andeldvthen-Fv:T

- Also called, subject reduction theorem, type
preservation theorem

e This is one of the most important sorts of
theorems in PL

 Whenever you make up a new safe language
you are expected to prove this

- Examples: Vault, TAL, CCured, ...
e Proof: next time!

#27

Homework

» Read Wright and Felleisen article

e Work on your projects!
- Status Update Due Soon

e Work on Homework 5

The reading is
not optional.

E
E

BEFORE I HAND oUT I'VE GoT A BAD
THE READING LIST, 15 FEELING ABouT
THERE ANYONE HERE THIS CLASS.)/

__+ WITH CPR TRAINING? ~ [ds e
)

ﬁﬁﬁﬁﬁ

1
s
++++++++++++++++++++ - DS
pepsmereretetey . =R TR e
S e e . | Y oo te e

e
e R S S et o I —— B e

