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More Lambda CalculusMore Lambda Calculus
andand

Intro to Type SystemsIntro to Type Systems
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The Reading
• Explain the Xavier Leroy article to me …

• How did he do register allocation? 
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Plan

• Heavy Class Participation
– Thus, wake up! (not actually kidding)

• Lambda Calculus
– How is it related to real life?
– Encodings
– Fixed points

• Type Systems
– Overview
– Static, Dyamic
– Safety, Judgments, Derivations, Soundness
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Lambda Review

•  λ-calculus is a calculus of functions
                  e := x  | λx. e  | e1 e2

• Several evaluation strategies exist based on 
β-reduction
                     (λx.e) e’ !β [e’/x] e

• How does this simple calculus relate to real 
programming languages?
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Functional Programming
• The λ-calculus is a prototypical functional 

language with:
– no side effects
– several evaluation strategies
– lots of functions

– nothing but functions (pure λ-calculus does not 
have any other data type)

• How can we program with functions?
• How can we program with only functions?
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Programming With Functions
• Functional programming is a programming style that 

relies on lots of functions
• A typical functional paradigm is using functions as 

arguments or results of other functions
– Called “higher-order programming”

• Some “impure” functional languages permit side-
effects (e.g., Lisp, Scheme, ML, Python)
– references (pointers), in-place update, arrays, 

exceptions
– Others (and by “others” we mean “Haskell”) use monads 

to model state updates
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Variables in Functional Languages

• We can introduce new variables:
let x = e1 in e2

– x is bound by let

– x is statically scoped in (a subset of) e2

• This is pretty much like (λx. e2) e1

• In a functional language, variables are never 
updated
– they are just names for expressions or values

– e.g., x is a name for the value denoted by e1 in e2

• This models the meaning of “let” in math (proofs)
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Referential Transparency
• In “pure” functional programs, we can reason 

equationally, by substitution
– Called “referential transparency” 

let x = e1 in e2   === [e1/x]e2

• In an imperative language a side-effect in e1 might 
invalidate the above equation

• The behavior of a function in a “pure” functional 
language depends only on the actual arguments
– Just like a function in math
– This makes it easier to understand and to reason about 

functional programs
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How Tough Is Lambda?

• Given e1 and e2, how complex (a la CS theory) 
is it to determine if:

e1 !β
* e   and   e2 !β

* e
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Expressiveness of λ-Calculus
• The λ-calculus is a minimal system but can express

– data types (integers, booleans, lists, trees, etc.)
– branching
– recursion

• This is enough to encode Turing machines
– We say the lambda calculus is Turing-complete

• Corollary: e1 =β e2 is undecidable

• Still, how do we encode all these constructs using 
only functions?

• Idea: encode the “behavior” of values and not their 
structure
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Encoding Booleans in λ-Calculus
• What can we do with a boolean? 

– we can make a binary choice (= “if” statement)

• A boolean is a function that, given two 
choices, selects one of them:
– true =def λx. λy. x

– false =def λx. λy. y

– if E1 then E2 else E3 =def E1 E2 E3

• Example: “if true then u else v” is 
(λx. λy. x) u v !β (λy. u) v !β u



#12

More Boolean Encodings

• Let’s try to do boolean or together  

• Recall: 
– true =def λx. λy. x

– false =def λx. λy. y

– if E1 then E2 else E3 =def E1 E2 E3

• We want or to take in two booleans and yield 
a result that is a boolean

• How can we do this? 
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A Trying Ordeal

• Recall: 
– true =def λx. λy. x

– false =def λx. λy. y

– if E1 then E2 else E3 =def E1 E2 E3

• Intution: 
– or a b = if a then true else b 

• Either of these will work: 
– or =def λa. λb. a true b

– or =def λa. λb. λx. λy. a x (b x y) 
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Final Boolean Encodings

• Think about how to do and and not
• Without peeking! Now come up and do it!
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Another Demand

• How to do and and not
• and a b = if a then b else false 

– and =def λa. λb. a b false

– and =def λa. λb. λx. λy. a (b x y) y

• not a = if a then false else true
– not =def λa. a false true

– not =def λa. λx. λy. a y x
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Encoding Pairs in λ-Calculus
• What can we do with a pair?

– we can access one of its elements                         
 (= “.field access”)

• A pair is a function that, given a boolean, 
returns the first or second element

mkpair x y =def λb. b x y
fst p =def p true
snd p =def p false

• fst (mkpair x y) !β (mkpair x y) true

!β true x y !β x
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Encoding Numbers in λ−Calculus

• What can we do with a natural number? 
– What do you, the viewers at home, think?
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Encoding Numbers λ-Calculus
• What can we do with a natural number?

– we can iterate a number of times over some function    
(= “for loop”) 

• A natural number is a function that given an 
operation f and a starting value s, applies f a 
number of times to s:

0 =def λf. λs. s

1 =def λf. λs. f s

2 =def λf. λs. f (f s)

– Very similar to List.fold_left and friends

• These are numerals in a unary representation
• Called Church numerals
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Test Time!

• How would you encode the successor function 
(succ x === x+1)?

• How would you encode more general 
addition? 

• Recall: 4 =def λf. λs. f f f (f s)
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Computing with Natural Numbers

• The successor function
            succ n =def λf. λs. f (n f s)
        or succ n =def λf. λs. n f (f s)

• Addition
                add n1 n2 =def n1 succ n2 

• Multiplication
                mult n1 n2 =def n1 (add n2) 0

• Testing equality with 0
                iszero n =def n (λb. false) true

• Subtraction
– Is not instructive, but makes a fun exercise …
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Computation Example
• What is the result of the application add 0?

(λn1. λn2. n1 succ n2) 0  !β

λn2. 0 succ n2 =

λn2. (λf. λs. s) succ n2 !β

λn2. n2 =

λx. x

• By computing with functions we can express 
some optimizations
– But we need to reduce under the lambda
– Thus this “never” happens in practice
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Toward Recursion
• Given a predicate P, encode the function “find” 

such that “find P n” is the smallest natural number 
which is larger than n and satisfies P

• Claim: with find we can encode all recursion
Intuitively, why is this true? 
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Encoding Recursion

• Given a predicate P encode the function “find” such 
that “find P n” is the smallest natural number 
which is larger than n and satisfies P

• find satisfies the equation
find p n = if p n then n else find p (succ n)

• Define
F = λf.λp.λn.(p n) n (f p (succ n))

• We need a fixed point of F
find = F find

or 
find p n = F find p n
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The Fixed-Point Combinator Y
• Let Y = λF. (λy.F(y y)) (λx. F(x x))

– This is called the fixed-point combinator
– Verify that Y F is a fixed point of F

         Y F !β (λy.F (y y)) (λx. F (x x)) !β F (Y F)

– Thus Y F =β F (Y F)

• Given any function in λ-calculus we can compute its 
fixed-point (w00t! why do we not win here?)

• Thus we can define “find” as the fixed-point of the 
function F from the previous slide

• Essence of recursion is the self-application “y y”
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Expressiveness of Lambda 
Calculus

• Encodings are fun
– Yes! Yes they are!

• But programming in pure λ-calculus is painful

• So we will add constants (0, 1, 2, …, true, 
false, if-then-else, etc.)

• Next we will add types
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Still Going!

• One minute 
break

• Stretch!



Q:  Books  (777 / 842) 

• Give the last word in all of the 
following 4 young adult book titles: 
–  My Side of the by Jean Craighead 

George 
–  Charlotte's by E. B. White 
–  Sadako and the 1000 Paper by 

Eleanor Coerr 
–  Little House in the Big by Laura 

Ingalls Wilder  



Q:  Cartoons  (679 / 842) 

• In this 1984 cartoon, the title 
character and her white sprite 
Twink rescue the seven "Color Kids" 
and use the "Color Belt" to bring 
color to the land and fight Murky 
Dismal. The Color Kids include such 
members as Red Butler, Buddy Blue 
and Lala Orange.  



Q:  Books  (711 / 842) 

•In this 1943 Antoine de Saint-
Exupery novel the title 
character lives on an asteroid 
with a rose but eventually 
travels to Earth.  



Q:  Advertising  (792 / 842) 

• Name either the restaurant or the 
candidate described below. 
"Where's the beef?" was used in a 
1984 series of commercials for this 
fast food chain. It was also used 
successfully by a 1984 presidential 
hopeful during the primaries to 
criticize the "new ideas" campaign 
of Gary Hart.  



Q:  Cartoons  (658 / 842) 

•Some of this 1973-1985 cartoon's 
features were "Conjunction 
Junction", "A Noun is a Person, 
Place or Thing" and "I'm Just A 
Bill". It also included electronics 
segments featuring Scooter 
Computer and Mr. Chips.  
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Types
• A program variable can assume a range of 

values during the execution of a program

• An upper bound of such a range is called a 
type of the variable
– A variable of type “bool” is supposed to assume 

only boolean values
– If x has type “bool” then the boolean expression 

“not(x)” has a sensible meaning during every run 
of the program
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Typed and Untyped Languages

• Untyped languages
– Do not restrict the range of values for a given variable
– Operations might be applied to inappropriate arguments. 

The behavior in such cases might be unspecified
– The pure λ-calculus is an extreme case of an untyped 

language (however, its behavior is completely specified)

• (Statically) Typed languages
– Variables are assigned (non-trivial) types
– A type system keeps track of types
– Types might or might not appear in the program itself
– Languages can be explicitly typed or implicitly typed
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The Purpose Of Types
• The foremost purpose of types is to prevent certain 

types of run-time execution errors
• Traditional trapped execution errors

– Cause the computation to stop immediately
– And are thus well-specified behavior
– Usually enforced by hardware
– e.g., Division by zero, floating point op with a NaN
– e.g., Dereferencing the address 0 (on most systems)

• Untrapped execution errors
– Behavior is unspecified (depends on the state of the 

machine = this is very bad!)
– e.g., accessing past the end of an array
– e.g., jumping to an address in the data segment
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Execution Errors
• A program is deemed safe if it does not cause untrapped 

errors
– Languages in which all programs are safe are safe languages

• For a given language we can designate a set of forbidden 
errors
– A superset of the untrapped errors, usually including some trapped 

errors as well
• e.g., null pointer dereference

• Modern Type System Powers:
– prevent race conditions (e.g., Flanagan TLDI ‘05)
– prevent insecure information flow (e.g., Li POPL ’05)
– prevent resource leaks (e.g., Vault, Weimer)
– help with generic programming, probabilistic languages, …
– … are often combined with dynamic analyses (e.g., CCured)
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Preventing Forbidden Errors - 
Static Checking

• Forbidden errors can be caught by a 
combination of static and run-time checking

• Static checking
– Detects errors early, before testing
– Types provide the necessary static information for 

static checking
– e.g., ML, Modula-3, Java
– Detecting certain errors statically is undecidable 

in most languages
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Preventing Forbidden Errors - 
Dynamic Checking

• Required when static checking is undecidable
– e.g., array-bounds checking

• Run-time encodings of types are still used 
(e.g. Lisp)

• Should be limited since it delays the 
manifestation of errors

• Can be done in hardware (e.g. null-pointer)
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Safe Languages
• There are typed languages that are not safe 

(“weakly typed languages”)
• All safe languages use types (static or dynamic)

• We focus on statically typed languages

Assembly?C, C++, 
Pascal, ...

Unsafe

λ-calculusLisp, Scheme, Ruby, 
Perl, Smalltalk, 
PHP, Python, …

ML, Java, 
Ada, C#, 

Haskell, ...

Safe

DynamicStatic

UntypedTyped
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Why Typed Languages?
• Development

– Type checking catches early many mistakes
– Reduced debugging time
– Typed signatures are a powerful basis for design
– Typed signatures enable separate compilation

• Maintenance
– Types act as checked specifications
– Types can enforce abstraction

• Execution
– Static checking reduces the need for dynamic checking
– Safe languages are easier to analyze statically

• the compiler can generate better code
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Homework

• Read Cardelli article
• Homework 5 Due
• Project Status Update Due Soon


