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Plan

• Introduce lambda calculus
– Syntax
– Substitution
– Operational Semantics (… with contexts!)
– Evaluations strategies
– Equality

• Later: 
– Relationship to programming languages
– Study of types and type systems
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Lambda Background

• Developed in 1930’s by Alonzo Church
• Subsequently studied by many people

– Still studied today!
• Considered the “testbed” for procedural and 

functional languages
– Simple
– Powerful
– Easy to extend with new features of interest
– Lambda:PL :: Turning Machine:Complexity
– Somewhat like a crowbar …

“Whatever the next 700 languages turn out to be, they 
will surely be variants of lambda calculus.”

(Landin ’66)
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Lambda Syntax
• The λ-calculus has 3 kinds of expressions (terms)

e ::= x Variables
    | λx. e Functions (abstractions)
    | e1 e2 Application

•  λx. e is a one-argument anonymous function with 
body e

•  e1 e2 is a function application
• Application associates to the left

x y z === (x y) z

• Abstraction extends far to the right 
λx. x λy. x y z === λx. (x [λy. {(x y) z}])
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Why Should I Care?
• A language with 3 expressions? Woof!
• Li and Zdancewic. Downgrading policies and relaxed 

noninterference. POPL ’05
– Just one example of a recent PL/security paper
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Lambda Celebrity Representative
• Milton Friedman?
•   Morgan Freeman?
•     C. S. Friedman?
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    Gordon Freeman

• Best-selling PC FPS to date …
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Examples of Lambda Expressions

• The identity function:
I =def λx. x

• A function that, given an 
argument y, discards it and 
yields the identity function:

λy. (λx. x)
• A function that, given an 

function f, invokes it on the 
identity function: 

λf. f (λx. x)
“There goes our 
grant money.”
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Scope of Variables
• As in all languages with variables, it is 

important to discuss the notion of scope
– The scope of an identifier is the portion of a 

program where the identifier is accessible

• An abstraction λx. E binds variable x in E
– x is the newly introduced variable
– E is the scope of x   (unless x is shadowed)

– We say x is bound in λx. E

– Just like formal function arguments are bound in 
the function body
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Free and Bound Variables

• A variable is said to be free in E if it has 
occurrences that are not bound in E

• We can define the free variables of an 
expression E recursively as follows:
– Free(x) = {x}
– Free(E1 E2) = Free(E1) [ Free(E2)

– Free(λx. E) = Free(E) – {x}

• Example: Free(λx. x (λy. x y z)) = {z}
• Free variables are (implicitly or explicitly) 

declared outside the expression
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Free Your Mind!

• Just as in any language with statically-nested 
scoping we have to worry about variable 
shadowing
– An occurrence of a variable might refer to 

different things in different contexts

• Example in IMP with locals: 
let x = 5 in x + (let x = 9 in x) + x

• In λ-calculus:

λx. x (λx. x) x
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Renaming Bound Variables
•  λ-terms that can be obtained from one another by 

renaming bound variables are considered identical

• This is called α-equivalence

• Renaming bound vars is called α-renaming

• Ex: λx. x is identical to λy. y and to λz. z

• Intuition:
– By changing the name of a formal argument and all of its 

occurrences in the function body, the behavior of the 
function does not change

– In λ-calculus such functions are considered identical
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Make It Easy On Yourself
• Convention: we will always try to rename 

bound variables so that they are all unique
– e.g., write λx. x (λy.y) x instead of λx. x (λx.x) x

• This makes it easy to see the scope of 
bindings and also prevents confusion!
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Substitution

• The substitution of F for x in E (written [F/x]E)
– Step 1. Rename bound variables in E and F so they are 

unique
– Step 2. Perform the textual substitution of f for X in E

• Called capture-avoiding substitution

• Example: [y (λx. x) / x] λy. (λx. x) y x
– After renaming: [y (λx. x) / x] λz. (λu. u) z x

– After substitution: λz. (λu. u) z (y (λx. x)) 

• If we are not careful with scopes we might get: 
λy. (λx. x) y (y (λx. x))   Ã wrong!
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The De Bruijn Notation
• An alternative syntax that avoids naming of bound 

variables (and the subsequent confusions)
• The De Bruijn index of a variable occurrence is that 

number of lambda that separate the occurrence 
from its binding lambda in the abstract syntax tree

• The De Bruijn notation replaces names of 
occurrences with their De Bruijn indices

• Examples:
–  λ x. x λ. 0
–  λ x. λ x. x λ. λ. 0
–  λ x. λ y. y λ. λ. 0
– (λ x. x x) (λ z. z z) (λ. 0 0) (λ. 0 0)
–  λ x. (λ x. λ y. x) x λ. (λ. λ. 1) 0 

Identical terms
have identical
representations!
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Combinators
• A λ-term without free variables is closed or a 

combinator
• Some interesting combinators:

I = λ x. x
K = λ x. λ y. x
S = λ f. λ g. λ x. f x (g x)
D = λ x. x x
Y = λ f. (λ x. f (x x)) (λ x. f (x x))

• Theorem: any closed term is equivalent to one 
written with just S, K and I
– Example: D =β S I I
– (we’ll discuss this form of equivalence later)



Q:  Music  (241 / 842) 

• Name the singer and his crossover 
1982 album that holds (as of 2005) 
the record of being the best-selling 
album of all-original material in the 
US (26 times platinum, 37 weeks as 
Billboard #1). Much of that success 
was the result of the singer's use of 
the MTV music video.  



Q:  Movies  (262 / 842) 

•Name two of the 
three rules given 
for the pet Gizmo 
in the 1984 movie 
Gremlins.  



Q:  Movies  (341 / 842) 

• This 1993 Mel Brooks parody film 
features "The Man in Black" as 
"Kevin Costner" and also stars 
Patrick Stewart as King Richard. It 
includes the exchange: "And why 
would the people listen to you? / 
Because, unlike some other Robin 
Hoods, I can speak with an English 
accent."  



Q:  General  (452 / 842) 

• Name any 3 of 
the 22 letters in 
the Hebrew 
alphabet.  



Q:  Games  (489 / 842) 

• This 1965 Wham-O toy is an 
extremely elastic sphere made of a 
rubber polymer with a high 
coefficient of restitution. When 
dropped from shoulder level onto a 
hard surface it rebounds to about 
90% of its original height.  



A:  Games  (489 / 842) 

•Super Ball 
–  Trivia: When Lamar Hunt saw his 
daughter playing with a Super 
Ball, it inspired him to name the 
new AFL-NFL World Championship 
Game the Super Bowl.  
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Informal Semantics
• We consider only closed terms
• The evaluation of

(λ x. e) f
– Binds x to f
– Evaluates e with the new binding
– Yields the result of this evaluation

• Like a function call, or like “let x = f in e”
• Example:

(λ f. f (f e)) g  evaluates to  g (g e)
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Operational Semantics
• Many operational semantics for the λ-calculus
• All are based on the equation

(λ x. e) f =β [f/x]e
usually read from left to right

• This is called the β-rule and the evaluation step a β-
reduction

• The subterm (λ x. e) f is a β-redex
• We write e !β g to say that e β-reduces to g in one 

step
• We write e !β

* g to say that e β-reduces to g in 0 or 
more steps
– Remind you of the small-step opsem term rewriting?
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Examples of Evaluation
• The identity function:

(λ x. x) E ! [E / x] x = E
• Another example with the identity:

(λ f. f (λ x. x)) (λ x. x) !
[λ x. x / f] f (λ x. x)) = 

[λ x. x / f] f (λ y. y)) = 
(λ x. x) (λ y. y) !

[λ y. y / x] x = λ y. y 
• A non-terminating evaluation:

(λ x. xx) (λ y. yy) !
[λ y. yy / x] xx = (λ y. yy) (λ y. yy) ! … 

• Try T T, where T = λx. x x x 
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Evaluation and the Static Scope

• The definition of substitution guarantees that 
evaluation respets static scoping:

(λ x. (λ y. y x)) (y (λ x. x)) !β λ z. z (y (λ v. v))

(y remains free, i.e., defined externally)

• If we forget to rename the bound y:
(λ x. (λ y. y x)) (y (λ x. x)) !β

* λ y. y (y (λ v. v))
(y was free before but is bound now)
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Another View of Reduction

• The application 

• Becomes:

(terms can grow substantially through β-reduction!)

e
x x x g

λ x. e

e

g g g

I am g!

Not one g, 
but three!
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Normal Forms

• A term without redexes is in normal form
• A reduction sequence stops at a normal form

• If e is in normal form and e !β
* f then e is 

identical to f

• K = λ x. λ y. x is in normal form

• K I is not in normal form
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Nondeterministic Evaluation

• We define a small-step reduction relation

• This is a non-deterministic semantics
• Note that we evaluate under λ (where?)

(λ x. e) f ! [f/x]e

λ x. e ! λ x. f

e ! f

e1 f ! e2 f

e1 ! e2

e f1 ! e f2

f1 ! f2
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Lambda Calculus Contexts

• Define contexts with one hole

• H ::= ² | λ x. H | H e | e H

• Write H[e] to denote the filling of the hole in 
H with the expression e

• Example:

H = λ x. x ² H[λ y. y] = λ x. x (λ y. y)

• Filling the hole allows variable capture!

H = λ x. x ² H[x] = λ x. x x
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Contextual Opsem

• Contexts allow concise formulations of 
congruence rules (application of local 
reduction rules on subterms)

• Reduction occurs at a β-redex that can be 
anywhere inside the expression

• The latter rule is called a congruence or 
structural rule

• The above rules to not specify which redex 
must be reduced first

(λ x. e) f ! [f/x]e H[e] ! H[f]

e ! f
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The Order of Evaluation

• In a λ-term there could be more than one 
instance of (λ x. e) f, as in:

(λ y. (λ x. x) y) E
– Could reduce the inner or outer λ
– Which one should we pick?

(λ y. (λ x. x) y) E

inner outer 

(λ  y. [y/x] x) E = (λ y. y) E [E/y] (λ x. x) y = (λ x. x) E

E



#33

The Diamond Property

• A relation R has the diamond property if 
whenever e R e1 and e R e2 then there exists 
e3 such that e1 R e3 and e2 R e3

•  !β does not have the diamond property

•  !β
* has the diamond property

• Also called the confluence property

E
R R

e1             e2

R R
E3
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A Diamond In The Rough

• Languages defined by non-deterministic sets 
of rules are common
– Logic programming languages
– Expert systems
– Constraint satisfaction systems

• And thus most pointer analyses …

– Dataflow systems
– Makefiles

• It is useful to know whether such systems 
have the diamond property
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(Beta) Equality

• Let =β be the reflexive, transitive and 
symmetric closure of !β

=β is (!β [ Ãβ)*

• That is, e =β f if e converts to f via a sequence 
of forward and backward !β

 ² ²

e ² f
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The Church-Rosser Theorem

• If e1 =β e2 then there exists e3 such that e1 !β
* 

e3 and e2 !β
* e3

²  ²

e1  ²  e2

 ²  ²

  e3

• Proof (informal): apply the diamond property 
as many times as necessary
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Corollaries

• If e1 =β e2 and e1 and e2 are normal forms then 
e1 is identical to e2

– From C-R we have 9e3. e1 !β
* e3 and e2 !β

* e3

– Since e1 and e2 are normal forms they are 
identical to e3

• If e !β
* e1 and e !β

* e2 and e1 and e2 are 
normal forms then e1 is identical to e2

– “All terms have a unique normal form.” 
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Evaluation Strategies

• Church-Rosser theorem says that independent of the 
reduction strategy we will find ·1 normal form

• But some reduction strategies might find 0

• (λ x. z) ((λ y. y y) (λ y. y y)) ! 

(λ x. z) ((λ y. y y) (λ y. y y)) ! …

• (λ x. z) ((λ y. y y) (λ y. y y)) ! z

• There are three traditional strategies
– normal order (never used, always works)
– call-by-name (rarely used, cf. TeX)
– call-by-value (amazingly popular)
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Civilization: Call By Value
• Normal Order

– Evaluates the left-most redex not contained in another 
redex

– If there is a normal form, this finds it
– Not used in practice: requires partially evaluating 

function pointers and looking “inside” functions
• Call-By-Name (“lazy”)

– Don’t reduce under λ, don’t evaluate a function 
argument (until you need to)

– Does not always evaluate to a normal form
• Call-By-Value (“eager” or “strict”)

– Don’t reduce under λ, do evaluate a function’s argument 
right away

– Finds normal forms less often than the other two
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Endgame

• This time: λ syntax, 
semantics, reductions, 
equality, …

• Next time: encodings, real 
prorams, type systems, and 
all the fun stuff!

Wisely done, Mr. 
Freeman. I will see 
you up ahead. 
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Homework

• Read Leroy article, think about axiomatic
• Homework 5 Due Later
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Tricksy On The Board Answer
• Is this rule unsound? 

• Nope: it’s our basic rule plus 2x consequence

• Note that Bthen ) Bthen Ç Belse

` {A} if p then cthen else celse {Bthen Ç Belse}
` {A Æ :p} celse {Belse}` {A Æ p} cthen {Bthen}

` {A} if p then c1 else c2 {B}
` {A Æ p} c1 {B}    ` {A Æ : p} c2 {B}

` {A’} c {B’}
` A’ ) A   ` {A} c {B}   ` B ) B’


