Lambda Calculus

T READ THIS) WHAT DIDYOU THINK | 1T REAUY MADE ME SEE THINGS
LIBRARY BOOK | OF IT? 1 DIFFERENTLY. ITS GWEN ME
YOU SOT ME. / - A LOT TO THINK ABOUT.

[

W GLAD QU
ENJONED 1T,

ITS COMPLICATING
MY LIFE. DONT
GET ME ANY MORE.

Bt — T

e

Jnurmonnr i

Plan A

|
y . L
9 (b —
ol AW) - ¥ |
= 3 =
- e
- =
=

e Introduce lambda calculus 3 § 7
- Syntax
- Substitution
- Operational Semantics (... with contexts!)
- Evaluations strategies
- Equality

e Later:
- Relationship to programming languages
- Study of types and type systems

#2

Lambda Background

e Developed in 1930’s by Alonzo Church

e Subsequently studied by many people
- Still studied today!
e Considered the “testbed” for procedural and
functional languages
- Simple
Powerful
Easy to extend with new features of interest
Lambda:PL :: Turning Machine:Complexity
Somewhat like a crowbar ...
“Whatever the next 700 languages turn out to be, they
will surely be variants of lambda calculus.”
(Landin ’66)

#3

Lambda Syntax

The A-calculus has 3 kinds of expressions (terms)

e:=X Variables
| AX. e Functions (abstractions)
| e e, Application

AX. e is a one-argument anonymous function with
body e
e, e, is a function application
Application associates to the left
XYyzZ===(XVY)Z
Abstraction extends far to the right
AX. X AY. Xy z === AX. (X [Ay. {(x V) z}])

#4

Why Should | Care?

o A language with 3 expressions? Woof!
e Li and Zdancewic. Down%gading policies and relaxed

noninterference. POPL "’

- Just one example of a recent PL/security paper

4. LOCAL DOWNGRADING POLICIES
4.1 Label Definition

Definition 4.1.1 (The policy language). In Figure 1.

Types To= int |7 —7

Constants cu= ¢

Operators & = 4+ — =...

Terms mu= Ax:T.m|mm|z|c|mEm
Policies n=__Ax:int. m

Labels o= {ni,.... ne}t (k>=1)

Figure 1: Lj,.s Label Syntax

I'-m:7
I'Fkm=m:1

F'mi=me:7

'Fme=mi:7

'CFmi=me:T 'Fma=ms:T

'mi=ms:7

e EFmi=me:m™

The core of the policy langnage is a variant of the simply-
typed A-calculus with a base type, binary operators and con-

stants. A downgrading policy is a A-term that specifies
how an integer can be downgraded: when this A-term is ap-
plied to the annotated integer, the result becomes public. A
1 1 h = " N el 2 | 2 I s I3 - Ear el -

F'EAr:mi.mi=Ar:71. ma :T1 — T2

'Fmi=mo:m1 — m
F'Fms=my:m

I'Fmy ms =1ma my: 7o

I'Fmy =ms :int
I'F g = my :int

I'Fmy @& ms = ma B my :int

Q-REFL

Q-SYMM

Q-TRANS

Q-ARBs

Q-ApP

Q-BiNOPp

Lambda Celebrity Representative

e Milton Friedman?
« Morgan Freeman?
e C.S. Friedman?

#6

Gordon Freeman

e Best-selling PC FPS to date ...

Examples of Lambda Expressions

e The identity function:
| =, AX. X

e A function that, given an
argument y, discards it and
yields the identity function:

AY. (AX. X)

e A function that, given an
function f, invokes it on the
identity function:

M. f (AX. X)

“There goes our
grant money.”

#8

Scope of Variables

e As in all languages with variables, it is
important to discuss the notion of scope

- The scope of an identifier is the portion of a
program where the identifier is accessible

e An abstraction Ax. E binds variable x in E

- x 1s the newly introduced variable
- E is the scope of x (unless x is shadowed)

- We say x is bound in Ax. E

- Just like formal function arguments are bound in
the function body

#9

Free and Bound Variables

e A variable is said to be free in E if it has
occurrences that are not bound in E

 We can define the free variables of an
expression E recursively as follows:

- Free(x) = {x}
- Free(E, E,) = Free(E,) U Free(E,)
- Free(AX. E) = Free(E) - {x}
e« Example: Free(Ax. x (Ay. xy z)) = {z}

e Free variables are (implicitly or explicitly)
declared outside the expression

Free Your Mind!

 Just as in any language with statically-nested
scoping we have to worry about variable
shadowing

- An occurrence of a variable might refer to
different things in different contexts

e Example in IMP with locals:
letx=5inx+ (let x=91in x) + X
e In A-calculus:

AX. X (AX. X) X

#11

Renaming Bound Variables

A-terms that can be obtained from one another by
renaming bound variables are considered identical

This is called a-equivalence

Renaming bound vars is called a-renaming

Ex: AX. x is identical to Ay. y and to Az. z

Intuition:

- By changing the name of a formal argument and all of its
occurrences in the function body, the behavior of the
function does not change

- In A-calculus such functions are considered identical

#12

Make It Easy On Yourself

e Convention: we will always try to rename
bound variables so that they are all unique

- e.g., write Ax. x (Ay.y) x instead of AX. X (AX.X) X

e This makes it easy to see the scope of
bindings and also prevents confusion!

WHAT DOES 1T MEAN
WHEN SOMEONE SANS

To "GWNE IT THE
oL COLLEGE TRY

/

IT MEANS You JOIN YOUR FRIENDS,

GET SOME CHEAP BEER, ORDER A
PIZZA, AND FORGET
AROUT TOMORROW.

WHAT 1T MEANS!)

WHERE DID
U co T

THAT'S NoT

F/Krmm& ?
= 7

Substitution

The substitution of F for x in E (written [F/X]E)

- Step 1. Rename bound variables in E and F so they are
unique

- Step 2. Perform the textual substitution of f for X in E
Called capture-avoiding substitution

Example: [y (Ax. X) / x] Ay. (AX. X) y X
- After renaming: [y (AX. X) / x] Az. (Au. u) z x
- After substitution: Az. (Au. u) z (y (AX. X))

If we are not careful with scopes we might get:
AY. (AX. X) y (Y (AX. X)) < wrong!

#14

The De Bruijn Notation

An alternative syntax that avoids naming of bound
variables (and the subsequent confusions)

The De Bruijn index of a variable occurrence is that
number of lambda that separate the occurrence
from its binding lambda in the abstract syntax tree

The De Bruijn notation replaces names of

occurrences with their De Bruijn indices
Examples:

A X. X

A X. A X, X
AX.AY.y

(A X.xXx) (A z.z2)
AX.(AX.Ay.Xx)x

A.O |dentical terms
A. A have identical
A.A

. 0 representations!
.0

(A. 0 0) (A. 0 0)
A. A.A.1)0

#15

Combinators

« A A-term without free variables is closed or a
combinator

e Some interesting combinators:
I =\ X. X
K =AX.AY. X
S =Af.ANg. AX. fX(gX)
D = A X. X X

Y =Af. (AX. T (XX))(AX.f(XX))

 Theorem: any closed term is equivalent to one
written with just S, K and |

- Example: D =; 511
- (we’ll discuss this form of equivalence later)

#16

Q: Music (241 / 842)

« Name the singer and his crossover
1982 album that holds (as of 2005)
the record of being the best-selling
album of all-original material in the
US (26 times platinum, 37 weeks as
Billboard #1). Much of that success
was the result of the singer's use of
the MTV music video.

Q: Movies (262 / 842)

e Name two of the
three rules given
for the pet Gizmo
in the 1984 movie
Gremlins.

GREMLINS

SPECIAL EDITION

- e
= ‘What
. il-'_ you see...
5 . isn't
g always
¥ what
you get.
Hl:—lﬂ,
e T
op

|

Q: Movies (341 / 842)

e This 1993 Mel Brooks parody film
features "The Man in Black™ as
"Kevin Costner” and also stars
Patrick Stewart as King Richard. It
includes the exchange: "And why
would the people listen to you? /
Because, unlike some other Robin
Hoods, | can speak with an English
accent.”

Q: General (452 / 842)

e Name any 3 of [3|77|D -
the 22 lettersin [d | f g | h| kh
the Hebrew P o ‘7 alBEREE
alphabet. k | Ilm| n| o | oo

lkmitell7il"7li gl
P r 5 sh t
ST TIND

| HEBREW ALPHABET |

Q: Games (489 / 842)

e This 1965 Wham-0O toy is an
extremely elastic sphere made of a
rubber polymer with a high
coefficient of restitution. When
dropped from shoulder level onto a
hard surface it rebounds to about
90% of its original height.

A: Games (489 / 842)

e Super Ball

- Trivia: When Lamar Hunt saw his
daughter playing with a Super
Ball, it inspired him to name the

new AFL-NFL World Championship
Game the Super Bowl.

Informal Semantics

« We consider only closed terms
e The evaluation of
(AXx.e)f
- Binds x to f

- Evaluates e with the new binding
- Yields the result of this evaluation

e Like a function call, or like “let x = f in €”
e Example:

(Af. f(fe))g evaluatesto ¢ (g e)

#23

Operational Semantics

Many operational semantics for the A-calculus
All are based on the equation

(A x. e) f =; [f/Xx]e
usually read from left to right

This is called the [3-rule and the evaluation step a [3-
reduction

The subterm (A x. e) f is a B-redex
We write e — g to say that e B-reduces to g in one
step

We write e —" g to say that e -reduces to g in 0 or
more steps
- Remind you of the small-step opsem term rewriting?

#24

Examples of Evaluation

The identity function:
AX.x)E>[E/x]x=E
Another example with the identity:
(Af. f(AX. X)) (AX.X)—>
[A x. x / f] f (A X. X)) =
[AX.x/f]f(Ay.y))=
AX.X)(Ay.y)—

[Ay.y/x]x=Ay.y k- 22
A non-terminating evaluation: (8

(A X.xx) (Ay.vyy) — TAIL IIEI:IIIISIIIN

[Ay.yy/x]xx=(Ay.yy) Ay.yy)—..
Try TT, where T = AX. X X X

#25

Evaluation and the Static Scope

e The definition of substitution guarantees that
evaluation respets static scoping:

AX. (AY.yx)) (Y (AX. X)) =g Az Z(y (AV.V))

(y remains free, i.e., defined externally)

o If we forget to rename the bound vy:
AX. (Ay.yx)) (Y (AX X)) =g Ay.y(y (Av.v))

(y was free before but is bound now)

#26

Another View of Reduction

e The application

e Becomes:

Not one g,
: but three!

g\/8\/8 -
(terms can grow substantlally through B-reduction!)

#27

Normal Forms

e A term without redexes is in normal form
e A reduction sequence stops at a normal form

e If € is in normal form and e —>B* f then e is
identical to f

e K=AX. Ay. xisin normal form
e K11is not in normal form

#28

Nondeterministic Evaluation

 We define a small-step reduction relation

(A Xx.e)f — [f/x]e
e, — e f, —f,

e, f—ef ef, > ef,
e — f

AX.e >AXf
e This is a non-deterministic semantics

e Note that we evaluate under A (where?)

#29

Lambda Calculus Contexts

e Define contexts with one hole
eH::=¢ | AX.H|He | eH

e Write H[e] to denote the filling of the hole in
H with the expression e

e Example:
H=AX.Xe H[AY.y]=AX. X(AY.Y)
e Filling the hole allows variable capture!
H=AX.Xxe H[x]=AX. XX

#30

Contextual Opsem

e —f
(A X. e) f — [f/Xx]e H[e] — HIf]

e Contexts allow concise formulations of
congruence rules (application of local
reduction rules on subterms)

e Reduction occurs at a [3-redex that can be
anywhere inside the expression

e The latter rule is called a congruence or
structural rule

e The above rules to not specify which redex
must be reduced first

#31

The Order of Evaluation

e In a A-term there could be more than one
instance of (A x. e) f, as in:

(Ay. (AX.X)y) E
- Could reduce the inner or outer A

- Which one should we pick?
Ay. (Ax.x)y)E
inner outer
Ay.[y/x]X)E=(Ay.y)E [E/lY] (A x. X)y = (A X. X) E

#32

The Diamond Property

e A relation R has the diamond property if

whenever e R
e, such that e

o —r3 UOES not

e, and e R e, then there exists

.Re;and e, R e,

have the diamond property

e —*has the ¢

iamond property

» Also called the confluence property

#33

A Diamond In The Rough

e Languages defined by non-deterministic sets
of rules are common

- Logic programming languages
- Expert systems

- Constraint satisfaction systems
e And thus most pointer analyses ...

- Dataflow systems
- Makefiles

e It is useful to know whether such systems
have the diamond property

#34

(Beta) Equality

» Let =, be the reflexive, transitive and
symmetric closure of —,

= is (—>[3 U <—B)*

o That is, e =; f if e converts to f via a sequence
of forward and backward —,

NN

#35

The Church-Rosser Theorem

e If e, =; €, then there exists e, such that e, —
e;and e, —, e,

e Proof (informal): apply the diamond property
as many times as necessary

#36

Corollaries

e If e, =; €, and e, and e, are normal forms then
e, 1s identical to e,
- From C-R we have Jde;. e, —; e;and e, —; €,

- Since e, and e, are normal forms they are
identical to e,

e Ife =, e ande —; e,and e, and e, are
normal forms then e, is identical to e,

- “All terms have a unique normal form.”
#37

Evaluation Strategies

e Church-Rosser theorem says that independent of the
reduction strategy we will find <1 normal form

e But some reduction strategies might find 0

e AX.Z)((AVY.VV)(AV.VV)) —
AX.Z) ((AY.VV)(AVY.VV))— ..
e AX. Z) ((AY.VVY)(AV.VV))—~7Z

e There are three traditional strategies
- normal order (never used, always works)
- call-by-name (rarely used, cf. TeX)
- call-by-value (amazingly popular)

#38

Civilization: Call By Value

« Normal Order

- Evgluates the left-most redex not contained in another
redex

- If there is a normal form, this finds it

- Not used in practice: requires partlally evaluating
function pointers and looking “inside” functions

e Call-By-Name (“lazy”)

- Don’t reduce under A, don’t evaluate a function
argument (until you need to)

- Does not always evaluate to a normal form
o Call-By-Value (“eager” or “strict”)
- Don’t reduce under A, do evaluate a function’s argument
right away
- Finds normal forms less often than the other two

Endgame

e This time: A syntax,
semantics, reductions,
equality, ...

e Next time: encodings, real
prorams, type systems, and
all the fun stuff!

Wisely done, Mr.
Freeman. | will see
you up ahead.

Tricksy On The Board Answer

e Is this rule unsound?
I_ {A /\ p} Cthen {Bthen} I_ {A /\ _'p} Celse {Belse}

- {A}if pthenc,_ elsec_.{B,., V B..}
e Nope: it’s our basic rule plus 2x consequence
FAAPIG B F{AA - PJG iB]
- {A} if p then ¢, else c, {B}

FA'=A H{A}c{B} FB=0"bB
- {A'} c B’}

« Note that B,_., = B,,., VB

else

#42

