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Tool Time

• How’s Homework 5 going?
• Get started early
• Compilation problems?

– See FAQ
(trivia: what tool brand is this?)
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More Power!

• You can handle it!
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Abstract Interpretation

• We have an abstract domain A 
– e.g., A = { positive, negative, zero } 
– An abstraction function β : Z ! A

• Z is our concrete domain

– A concretization function γ : A ! P(Z)

• Positive + Positive = ???
• Positive + Negative = ???
• Positive / Zero = ???
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We don't want security to get suspicious ...



#6



#7

Review

• We introduced abstract interpretation
• An abstraction mapping from concrete to 

abstract values
– Has a concretization mapping which forms a 

Galois connection 

• We’ll look a bit more at Galois connections
• We’ll lift AI from expressions to programs
• … and we’ll discuss the mythic “widening”
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Why Galois Connections?

• We have an abstract domain A
– An abstraction function β : Z ! A

– Induces α : P(Z) ! A and γ : A ! P(Z)

• We argued that for correctness
γ(a1 op a2) ¾ γ(a1) op γ(a2)

– We wish for the set on the left to be as small as possible
– To reduce the loss of information through abstraction

• For each set S µ C, define α(S) as follows:
– Pick smallest S’ that includes S and is in the image of γ
– Define α(S) = γ-1(S’)
– Then we define: a1 op a2 = α(γ(a1) op γ(a2))

• Then α and γ form a Galois connection
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Galois Connections
• A Galois connection between complete 

lattices A and P(C) is a pair of functions α and 
γ such that:
–  γ and α are monotonic 

• (with the µ ordering on P(C))  

–  α (γ (a)) = a for all a 2 A
–  γ (α(S)) ¾ S for all S 2 P(C)

S
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More on Galois Connections

• All Galois 
connections 
are monotonic

• In a Galois 
connection 
one function 
uniquely and 
absolutely 
determines 
the other 
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Abstract Interpretation for 
Imperative Programs

• So far we abstracted the value of 
expressions

• Now we want to abstract the state 
at each point in the program

• First we define the concrete 
semantics that we are abstracting
– We’ll use a collecting semantics
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Collecting Semantics

• Recall
– A state σ 2 Σ. Any state σ has type Var ! Z
– States vary from program point to program point

• We introduce a set of program points: labels
• We want to answer questions like:

– Is x always positive at label i?
– Is x always greater or equal to y at label j?

• To answer these questions we’ll construct
C 2 Contexts. C has type Labels ! P(Σ)

– For each label i, C(i) = all possible states at label i
– This is called the collecting semantics of the program
– This is basically what SLAM (and BLAST, ESP, …) 

approximate (using BDDs to store P(Σ) efficiently)
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Defining the Collecting Semantics
• We first define relations between the collecting 

semantics at different labels
– We do it for unstructured CFGs (cf. HW5!) 
– Can do it for IMP with careful notion of program points

• Define a label on each edge in the CFG
• For assignment

                      Cj = {σ[x := n] | σ 2 Ci Æ «e¬σ = n}x := e

i

j
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Defining the Collecting Semantics

• For conditionals

Celse = { σ | σ 2 Cin Æ «b¬σ = false}

Cthen = { σ | σ 2 Cin Æ «b¬σ = true}

• Assumes b has no side effects (as in IMP or HW5)

in

b truefalse

else then
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Defining the Collecting Semantics

• For a join

Cout = Ci [ Cj

• Verify that these relations are monotonic
– If we increase a Cx all other Cy can only increase

i

out

j
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Collecting Semantics: Example
• Assume x ¸ 0 initially (explain this?)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
C3 = C2 Å {σ | σ(x) ≠ 0}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
C3 = C2 Å {σ | σ(x) ≠ 0}
C4 = {σ[y:=σ(y)*σ(x)] | 

σ 2 C3}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
[ {σ[x:=σ(x)-1] | σ2C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C4 = {σ[y:=σ(y)*σ(x)] | 

σ 2 C3}
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Collecting Semantics: Example
• Assume x ¸ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
[ {σ[x:=σ(x)-1] | σ2C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C4 = {σ[y:=σ(y)*σ(x)] | 

σ 2 C3}
C5 = C2 Å {σ | σ(x) = 0}
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Why Does This Work?
• We just made a system of recursive equations 

that are defined largely in terms of 
themselves
– e.g., C2 = F(C4), C4 = G(C3), C3 = H(C2)

• Why do we have any reason to believe that 
this will get us what we want?
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The Collecting Semantics
• We have an equation with the unknown C

– The equation is defined by a monotonic and 
continuous function on domain Labels ! P(Σ)

• We can use the least fixed-point theorem 
– Start with C0(L)=;      (aka C0 = λL.;)

– Apply the relations between Ci and Cj to get C1
i 

from C0
j

– Stop when all Ck = Ck-1

– Problem: we’ll go on forever for most programs
– But we know the fixed point exists
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

;

;

;

;

;

;
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

;

;

;

;

;
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1} 

;

;

;

;
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1} 

{x=0,y=1}

;

;

{x>0,y=1}
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1} 

{x=0,y=1}

{x>0,y=x}

;

{x>0,y=1}
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1} 

{x=0,y=1}

{x>0,y=x}

{x¸ 0, y=x+1}

{x>0,y=1}
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Collecting Semantics: Example
• (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 =    { σ[y:=1] | σ 2 C1}
       [ {σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1 Ç y = x + 1} 

{x=0,y=1}

{x>0,y=x}

{x¸ 0, y=x+1}

{x>0,y=1}



Q:  Theatre  (006 / 842) 

• Name the 1879 Gilbert & Sullivan 
operetta parodied by the following 
quote: 
–  I am the very model of a Newsgroup 

personality. 
–  I intersperse obscenity with tedious 

banality. 
–  Addresses I have plenty of, both genuine 

and ghosted too, 
–  On all the countless newsgroups that my 

drivel is cross-posted to.  



Q:  TV Music  (040 / 842) 

•Fill in the three blanks in this 
Flintstones theme song snippet: 
–  Let's ride with the family down the 
street 

–  Through the courtesy of blank 
blank blank 

–  When you're with the Flintstones 
–  Have a yabba dabba doo time  
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Abstract Interpretation 

• Pick a complete lattice A (abstractions for P(Σ) )
– Along with a monotonic abstraction α : P(Σ) ! A

– Alternatively, pick β : Σ ! A

– This uniquely defines its Galois connection γ

• Take the relations between Ci and move them to the 
abstract domain:

a : Label ! A

• Assignment

      Concrete: Cj = {σ[x := n] | σ 2 Ci Æ «e¬σ = n}

      Abstract:  aj = α {σ[x := n] | σ 2 γ(ai) Æ «e¬σ = n}
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Abstract Interpretation

• Conditional

       Concrete: Cj = { σ | σ 2 Ci Æ «b¬σ = false} and  

                       Ck = { σ | σ 2 Ci Æ «b¬σ = true}

       Abstract: aj = α { σ | σ 2 γ(ai) Æ «b¬σ = false} and  

                      ak = α { σ | σ 2 γ(ai) Æ «b¬σ = true}

• Join
      Concrete: Ck = Ci [ Cj

      Abstract: ak = α (γ(ai) [ γ(aj)) = lub {ai, aj}
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Least Fixed Points 
In The Abstract Domain

• We have a recursive equation with unknown “a”
– Defined by a monotonic and continuous function on the 

domain Labels ! A

• We can use the least fixed-point theorem:
– Start with a0 = λL.?       (aka: a0(L) = ?)
– Apply the monotonic function to compute ak+1 from ak

– Stop when ak+1 = ak

• Exactly the same computation as for the collecting 
semantics
– What is new?
– “There is nothing new under the sun but there are lots 

of old things we don't know.” – Ambrose Bierce 
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Least Fixed Points 
In The Abstract Domain

• We have a hope of termination!
• Classic setup: A has only uninteresting chains (finite 

number of elements in each chain)
– A has finite height h (= “finite-height lattice”)

• The computation takes O(h £ |Labels|2) steps
– At each step “a” makes progress on at least one label
– We can only make progress h times 
– And each time we must compute |Labels| elements

• This is a quadratic analysis: good news
– This is exactly the same as Kildall’s 1973 analysis of 

dataflow’s polynomial termination given a finite-height 
lattice and monotonic transfer functions. 
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Abstract Interpretation: Example
• Consider the following program, x>0

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5F T

We want to do the
sign analysis on it.
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Abstract Domain for Sign Analysis

• Invent the complete sign lattice 
S = { ?, -, 0, +, > }

• Construct the complete lattice 
A = {x, y} ! S

– With the usual point-wise ordering
– Abstract state gives the sign for x and y

• We start with a0 = λL.λv2{x,y}.?
– aka: a0(L,v) = ?
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Let’s Do It!

>>+?y

00?x5

>>+?y

>>+?x4

>>+?y

>>+?x3

>>+?y

>>+?x2

>>y

++x1

Iterations !Label
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Notes, Weaknesses, Solutions
• We abstracted the state of each variable 

independently
A = {x, y } ! {?, -, 0, +, > }

• We lost relationships between variables
– E.g., at a point x and y may always have the same 

sign
– In the previous abstraction we get {x := >, y := >} 

at label 2 (when in fact y is always positive!)

• We can also abstract the state as a whole
A = P({?, -, 0, +, >} £ {?, -, 0, +, >})
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Other Abstract Domains
• Range analysis

– Lattice of ranges: R ={ ?, [n..m], (-1, m], [n, +1), > }
– It is a complete lattice

• [n..m] t [n’..m’] = [min(n, n’)..max(m,m’)]
• [n..m] u [n’..m’] = [max(n, n’)..min(m, m’)]
• With appropriate care in dealing with 1

–  β : Z ! R such that β(n) = [n..n]

–  α : P(Z) ! R such that α(S) = lub {β(n) | n 2 S} = 
[min(S)..max(S)]

–  γ : R ! P(Z) such that γ(r) = { n | n 2 r }

• This lattice has infinite-height chains
– So the abstract interpretation might not terminate!
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Example of Non-Termination

• Consider this (common) program fragment

z := 1

z · n

z := z + 1

1

2

3 4
T F

We want to do range 
analysis on it.
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Example of Non-Termination

• Consider the sequence of abstract states at point 2
– [1..1], [1..2], [1..3], …
– The analysis never terminates
– Or terminates very late if the loop bound is known 

statically

• It is time to approximate even more: widening
• We redefine the join (lub) operator of the lattice to 

ensure that from [1..1] upon union with [2..2] the 
result is [1..+1) and not [1..2]

• Now the sequence of states is
– [1..1], [1, +1), [1, +1)  Done (no more infinite chains)
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Formal Definition of Widening 
(Cousot 16.399 “Abstract Interpretation”, 2005)

• A widening 5 : (P £ P) ! P on a poset hP,vi 
satisfies:
– 8 x, y 2 P .   x v (x 5 y)   Æ   y v (x 5 y)
– For all increasing chains x0 v x1 v … the increasing chain 

y0 =def x0, …, yn+1 =def yn 5 xn+1, … is not strictly increasing.

• Two different main uses:
– Approximate missing lubs.  (Not for us.) 
– Convergence acceleration.  (This is the real use.) 

• A widening operator can be used to effectively compute an upper 
approximation of the least fixpoint of F 2 L 5 L starting from 
below when L is computer-representable but does not satisfy the 
ascending chain condition. 
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Formal Widening Example 
[1,1]5[1,2] = [1,+1)

• Range Analysis on z:
L0:  z := 1 ;
L1:  while z<99 do
L2: z := z+1
L3:  done /* z ¸ 99 */

L4:     

yL4
0 = [99,+1)xL4

0 = [99,+1)

yL3
1 = [2,+1)xL3

1 = [2,+1)

yL2
1 = [1,+1)xL2

1 = [1,2]

yL3
0 = [2,2]xL3

0 = [2,2]

yL1
0 = [1,1]xL1

0 = [1,1]

stable (fewer than 99 iterations!)

yL2
0 = [1,1]xL2

0 = [1,1]

yL0
0 = ?xL0

0 = ?

Widened yiOriginal xi

xLi
j =def the jth iterative attempt 

to compute an abstract value for 
z at label Li

Recall lub S = [min(S)..max(S)]
lub {[2,+1),[1,+1)} = {[1,+1)}
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Other Abstract Domains

• Linear relationships between variables
– A convex polyhedron is a subset of Zk whose elements 

satisfy a number of inequalities: 
a1x1 + a2x2 + … + akxk ¸ ci

– This is a complete lattice; linear programming methods 
compute lubs

• Linear relationships with at most two variables
– Convex polyhedra but with · 2 variables per constraint

– Octagons (x + y ¸ c) have efficient algorithms

• Modulus constraints (e.g. even and odd)
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Abstract Chatter
• AI, Dataflow and Software Model Checking

– The big three (aside from flow-insensitive type systems) 
for program analyses

• Are in fact quite related:
– David Schmidt. Data flow analysis is model checking of 

abstract interpretation. POPL ’98. 

• AI is usually flow-sensitive (per-label answer)
• AI can be path-sensitive (if your abstract domain 

includes Ç, for example), which is just where model 
checking uses BDD’s

• Metal, SLAM, ESP, … can all be viewed as AI
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Abstract Interpretation 
Conclusions

• AI is a very powerful technique that underlies a 
large number of program analyses

• AI can also be applied to functional and logic 
programming languages

• There are a few success stories
– Strictness analysis for lazy functional languages
– PolySpace for linear constraints

• In most other cases however AI is still slow
• When the lattices have infinite height and widening 

heuristics are used the result becomes unpredictable 


