Abstract Interpretation

(Galois, Collections, Widening)

WHAT T FIGURED
QUT? THE
MEANING OF
WORDS 1SNT

ANY WORD CAN

W"“\q

HEY DAD, KNOW |

A FIXED THING ! P

MEAN AN{THING ! :_ '

BY GINING WORDS NEW
MEANINGS, CRDINARY
ENGLISH CAN BECOME AN
EXCLUSIONARY CQDE ! TWO
GENERATIONS CAN BE
DIVIDED BY THE SAME
LANGUAGE !

To THAT END, TLL BE
INVENTING NEW DEFINITIONS
FOR, COMMON WORDS, SO
WELL BE UNABLE TO

ﬂﬁﬂuﬁlthﬁ .
y

DONT oy THINK
THATS TGThLL'{
SEAM? TS
Luemcmzu

MARNY.
FAB.

Tool Time

e« How’s Homework 5 going?

e Get started early &

« Compilation problems? =
- See FAQ

(trivia: what tool brand is this?)

AL AN AT e | R
\ '.'!I. |§_!1.|;_}'||L:“inli;:.l_f 1

More Power!

e You can handle it!

R - Yot :
St '-'._..r AR r!p"'-) DER R K, v
£ e £ P
o T"::I: . iT:H %""—""F::' - - 4

"INy ol

J! {ml'

et bl
g

-

Abstract Interpretation

e We have an abstract domain A

- e.g., A ={ positive, negative, zero }
- An abstraction function 3 : Z — A

e 7/, 1S our concrete domain

- A concretization function y: A — P(Z)
o Positive + Positive = 7?7
e Positive + Negative = 7?7
e Positive / Zero = ???

#4

We don't want security to get suspicious ...

Review

 We introduced abstract interpretation

e An abstraction mapping from concrete to
abstract values

- Has a concretization mapping which forms a
Galois connection

e We’ll look a bit more at Galois connections
o We’'ll lift Al from expressions to programs
e ... and we’ll discuss the mythic “widening”

#7

Why Galois Connections?

We have an abstract domain A
- An abstraction function 3 : Z — A

- Induces a : P(Z) - Aandy: A — P(Z)
We argued that for correctness
y(a, op a,) D Y(a,) op Y(a,)

- We wish for the set on the left to be as small as possible
- To reduce the loss of information through abstraction

For each set S C C, define a(S) as follows:

- Pick smallest S’ that includes S and is in the image of y
- Define a(S) = y'(S’)
- Then we define: a, op a, = a(y(a,) op y(a,))

Then a and y form a Galois connection

#8

Galois Connections

e A Galois connection between complete
lattices A and P(C) is a pair of functions a and

y such that:
- yand a are monotonic
e (with the C ordering on P(C))
- a(y(@)=a foralla e A I
- y(a(S)) 2 S for all S € P(C)

=

vk
L

#9

More on Galois Connections
MR ARV . All Galois

“anythlng which hurts connections
th le' ict- .
o are monotonic

ious convictions, .
must be avoided. i In a GalOIS
expression : connection
hould b - T J ' .
:i:d in : ::::t one function
of ibili -
P uniquely and
absolutely
73) (Y notaffee wiy determines
dangerousl| what you say but I will
fuel passio defend {o the death the other
_ vourtight tosayit"

#10

Abstract Interpretation for
Imperative Programs

e So far we abstracted the value of
expressions

e Now we want to abstract the state
at each point in the program

 First we define the concrete
semantics that we are abstracting

- We’ll use a collecting semantics

#11

Collecting Semantics

Recall
- A state g € 2. Any state o has type Var — Z

- States vary from program point to program point
We introduce a set of program points: labels
We want to answer questions like:

- Is x always positive at label i?
- Is x always greater or equal to y at label j?

To answer these questions we’ll construct

C € Contexts. C has type Labels — P(X)

- For each label i, C(i) = all possible states at label i
- This is called the collecting semantics of the program

- This is basically what SLAM (and BLAST, ESP, ...)
approximate (using BDDs to store P(2) efficiently)

#12

Defining the Collecting Semantics

e We first define relations between the collecting
semantics at different labels

- We do it for unstructured CFGs (cf. HW5!)
- Can do it for IMP with careful notion of program points

e Define a label on each edge in the CFG
e For assignment

x:=e| C={o[x:=n]|oecCAle]o=n}

#13

Defining the Collecting Semantics

e For conditionals

2
.. Jalse — ~ true

else then
C..={0| oeC_A[b]o="false}

Cion ={0 | 0€C_ A[b]o = true}

e Assumes b has no side effects (as in IMP or HW5)

#14

Defining the Collecting Semantics

e For a join

Cout = G U C,

e Verify that these relations are monotonic
- If we increase a C, all other C, can only increase

#15

Collecting Semantics: Example

e Assume x > 0 initially (explain this?)

T 1

y;=1

C,={o | o(x) > 0}

#16

Collecting Semantics: Example

o Assume x > 0 initially

T 1

y =1 C,={o | o(x) > 0}
2 C,={oaly:=1] | o€ C}

o Eae

#17

Collecting Semantics: Example

o Assume x > 0 initially

T 1

yf=1

C,={o | o(x) > 0}

: 2 C,={oly:=1]1|oeC}

o Eae

C.,=C, n{o| a(x) =0}

#18

Collecting Semantics: Example

o Assume x > 0 initially

T 1

V=1 C,={o | o(x) >0}

§ 2 C,={oly:=1] | oceC}

3, @TC3:CZH{G|G(X)¢O}

| > ¢, = {oly:=a(y)*o(x)] |
yi=y~X ocC}

#19

Collecting Semantics: Example

o Assume x > 0 initially

T 1

V=1 C,={o | o(x) > 0}

: 2 C,={oly:=1]1|oeC}

o Foger0-T.. U {obe=0(0-1] | 0eC)

> C.,=C,n{o| a(x) =0}

C, = {aly:=o(y)*o(x)] |
oeC}

#20

Collecting Semantics: Example

o Assume x > 0 initially

T 1

e C,={o | a(x) > 0}

§ 2 C,={oly:=1]1]oeC}

3. F‘@T . U{o[x:=0(x)-1] | oeC,}
| > ¢,=C,n{o | o(x) % 0)

y:=y"X C, = {oly:=a(y)*a(x)] |

4 ocC}

X:i=x-1 C.=C,n{o | a(x) =0}

#21

Why Does This Work?

 We just made a system of recursive equations
that are defined largely in terms of
themselves

- e.g., C,=F(C), C,=G(C,), C; =H(C)

 Why do we have any reason to believe that
this will get us what we want?

HEY, YOU wiars | | Youve never ¥ ow oo \| | oo 1 reawy How can | 1 are you WHAT DO
wﬁ%&%ﬁ THAT ? ﬁ.’?ﬁrﬁw THE You, Eﬁ'ﬁfﬂ .;ﬁ fRav el || putring Yo
TH ' ITe ' ¢ MEAN 7

? &AM THe RULESZ) I '
H""H-_] N‘
(M

\Efﬂf / “*-.._____;r_,/&__

i [}
'{' . I ! L'\- ; .:-"'. I..-'. *
afegie e
¥ \ -] | .I-I I

The Collecting Semantics

 We have an equation with the unknown C
- The equation is defined by a monotonic and
continuous function on domain Labels — P(%)
e We can use the least fixed-point theorem
- Start with C°(L)=0 (aka C° = AL.0)
- Apply the relations between C; and C, to get C',
from C°,
- Stop when all Ck = Ck
- Problem: we’ll go on forever for most programs
- But we know the fixed point exists

#23

Collecting Semantics: Example

e (assume x > 0 initially)
pe?

0

y =1

* X

n

X .

4

x -1

o 0
@1—5‘@
3 5
0

y '

¢,= {0 | o(x) > 0)
C,= {oaly=1]1|loeC}

U {o[x:=0(x)-1]1| o0 € C,}
C.=C,n{o| o(x) =0}
C.=C,n{o| a(x)=0}

C, = {oly:=a(y)*a(x) | o € C#%l

Collecting Semantics: Example

e (assume x > 0 initially)
I 1 {x>0}

0

y =1

* X

n

X .

4

x -1

o 0
@1—5‘@
3 5
0

y '

¢,= {0 | o(x) > 0)
C,= {oaly=1]1|loeC}

U {o[x:=0(x)-1]1| o0 € C,}
C.=C,n{o| o(x) =0}
C.=C,n{o| a(x)=0}

C, = {oly:=a(y)*a(x) | o € C#%

Collecting Semantics: Example
e (assume x > 0 initially)
I 1 {x>0]}

0

y =1

* X

n

X .

4

x -1

) 2 {x>0,y=1}
3 = o)
0 C,={o | a(x) > 0}

y '

C,= {oaly=1]1|loeC}

U {o[x:=0(x)-1]1| o0 € C,}
C.=C,n{o| o(x) =0}
C.=C,n{o| a(x)=0}

C, = {oly:=a(y)*a(x) | o € C#%

Collecting Semantics: Example

e (assume x > 0 initially)

0

I 1 {x>0}

y =1

{x>0y=1}

3

y '

* X

I

X .

4

x -1

‘ 2 {x>0,y=1
5 -
(x=0y=1} &171O | o(x) > 0}

C,= {oaly=1]1|loeC}

U {o[x:=0(x)-1]1| o0 € C,}
C.=C,n{o| o(x) =0}
C.=C,n{o| a(x)=0}

C, = {oly:=a(y)*a(x) | o € C#El

Collecting Semantics: Example
e (assume x > 0 initially)
I 1 {x>0]}

0 y:l:1

2 {x>0,y=1}
{x>0,y=1} ¢ ‘
3 @
5 -
(x=0y=1} &171O | o(x) > 0}

y "X ¢, {oly=11loec)
f 0.y= U{o[xi=a(x)-1] | 0 € C;}
{x>0y=x} C,=C,n{c | o(x)#0)
C.=C,n{o | a(x) =0}

C, = {oly:=a(y)*o(x) | 0 € C;}

Collecting Semantics: Example
e (assume x > 0 initially)
I 1 {x>0]}

{x>0,y=x+1} Y= ;

2 {x>0,y=1}
{x>0,y=1} ¢ ‘
3 @
5 -
(x=0y=1} &171O | o(x) > 0}

yizy* x C,= {oly:=1]| oeC}
U {o[x:=0(x)-1] | o € C,}

i { {x>0,y=x} C.=C,n{o| o(x)z 0}

xi=x-1 C,=C,n{o| o(x) =0}

C, = {oly:=o(y)*o(x) | o € C#Z%

Collecting Semantics: Example
e (assume x > 0 initially)
I 1 {x>0]}

{x>0,y=x+1} Y= ;

2 {XZO'Y:I\/Y:X+1}
{x>0,y=1} ¢ ‘
3 G:»
5 -
(x=0y=1} &171O | o(x) > 0}

yizy* x C,= {oly:=1]| oeC}
U {o[x:=0(x)-1] | o € C,}

i { {x>0,y=x} C.=C,n{o| o(x)z 0}

xi=x-1 C,=C,n{o| o(x) =0}

C, = {oly:=o(y)*o(x) | o € C#%%

Q: Theatre (006 / 842)

« Name the 1879 Gilbert & Sullivan
operetta parodied by the following
quote:

- | am the very model of a Newsgroup
personality.

- | intersperse obscenity with tedious
banality.

- Addresses | have plenty of, both genuine
and ghosted too,

- On all the countless newsgroups that my
drivel is cross-posted to.

Q: TV Music (040 / 842)

e Fill in the three blanks in this
Flintstones theme song snippet:

- Let’s ride with the family down the
street

- Through the courtesy of blank
blank blank

- When you're with the Flintstones
- Have a yabba dabba doo time

Abstract Interpretation

e Pick a complete lattice A (abstractions for P(%))
- Along with a monotonic abstraction a : P(X) — A
- Alternatively, pick f: Z — A
- This uniquely defines its Galois connection y
« Take the relations between C. and move them to the
abstract domain:
a: Label — A

e Assignment
Concrete: C;={o[x :=n] | 0 € C; A [e]o = n}
Abstract: a,=a {o[x:=n] | o € y(a) A [e]o = n}

#33

Abstract Interpretation

e Conditional

Concrete: CJ. ={o | oeC A[b]o-=

false} and

={G|0€CA['b]]G=true}

Abstract: a,=a {0 | o€ y(a) A

oo = false} and

—a{clcey A
e Join
Concrete: C =CUC,
Abstract: a =0 (Y(a) U y@a)) =

blo = true}

lUb {al)]}

#34

Least Fixed Points
In The Abstract Domain

 We have a recursive equation with unknown “a”

- Defined by a monotonic and continuous function on the
domain Labels — A

 We can use the least fixed-point theorem:
- Start with a® = AL. L (aka: a°(L) = L)
- Apply the monotonic function to compute ak*' from ak
- Stop when ak! = ak
e Exactly the same computation as for the collecting
semantics
- What is new?
- “There is nothing new under the sun but there are lots
of old things we don't know.” - Ambrose Bierce

#35

Least Fixed Points
In The Abstract Domain

We have a hope of termination!

Classic setup: A has only uninteresting chains (finite
number of elements in each chain)

- A has finite height h (= “finite-height lattice”)

The computation takes O(h x |Labels|?) steps

- At each step “a” makes progress on at least one label

- We can only make progress h times

- And each time we must compute |Labels| elements

This is a quadratic analysis: good news

- This is exactly the same as Kildall’s 1973 analysis of
dataflow’s polynomial termination given a finite-height
lattice and monotonic transfer functions.

#36

Abstract Interpretation: Example
e Consider the following program, x>0

y:=1
2
3 @ 5
yizy* x We want to do the
{ sign analysis on it.

#37

Abstract Domain for Sign Analysis

 Invent the complete sign lattice
S={1,-,0,+ T}
e Construct the complete lattice
A=1{x,y}—>S
- With the usual point-wise ordering
- Abstract state gives the sign for x and y

e We start with a° = AL.AVeE{X,y}. L
- aka: a’(L,v) = L

#38

Let’s Do It!

Label lterations —

1 X | + +
y| T T

2 |x|d T T
y |+ T

3 |xl|d + T T
y L +

4 |x|L + T T
y L + T T

5 |x|4
y L

#39

Notes, Weaknesses, Solutions

e We abstracted the state of each variable
independently

A={x,y}—{L,-0,+ T3}
e We lost relationships between variables
- E.g., at a point x and y may always have the same
sign
- In the previous abstraction we get {x := T, y := T}
at label 2 (when in fact y is always positive!)

e We can also abstract the state as a whole
A P({J—) Ty O) +, T}X {J—a T O) +, T})

#40

Other Abstract Domains

e Range analysis
- Lattice of ranges: R={ L, [n..m], (-o0, m], [n, +o0), T }

It is a complete lattice
e [n..m] U [n’..m’] = [min(n, n’)..max(m,m’)]
e [n..m] M [n’..m’] = [max(n, n’)..min(m, m’)]
« With appropriate care in dealing with oo

B :Z — R such that B(n) = [n..n]
a : P(Z) — R such that a(S) = lub {B(n) | n € S} =
[min(S)..max(S)]
V:R—=P(L)suchthaty(r)={n | ner}
e This lattice has infinite-height chains
- So the abstract interpretation might not terminate!

#41

Example of Non-Termination

e Consider this (common) program fragment

We want to do range
analysis on it.

Z:=Z+ 1

#42

Example of Non-Termination

e Consider the sequence of abstract states at point 2

- [1..1], [1..2], [1..3], ...
- The analysis never terminates

- Or terminates very late if the loop bound is known
statically

e |t is time to approximate even more: widening

 We redefine the join (lub) operator of the lattice to

ensure that from [1..1] upon union with [2..2] the
result is [1..+00) and not [1..2]

e Now the sequence of states is
- [1..1], [1, +0), [1, +o0) Done (no more infinite chains)

#43

Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)

o A widening 7 : (P x P) — P on a poset (P,C)
satisfies:
—VXx,yeP. xE(xwvy) AN yE(xwvy)
- For all increasing chains x° C x' C ... the increasing chain
yO =def 0., yn1 =def yn 7 xn+1 .. is not strictly increasing.
e Two different main uses:
- Approximate missing lubs. (Not for us.)

- Convergence acceleration. (This is the real use.)

« A widening operator can be used to effectively compute an upper
approximation of the least fixpoint of F € L sy L starting from
below when L is computer-representable but does not satisfy the
ascending chain condition.

#44

Formal Widening Example
[1,1]v11,2] = [1,+00)

e Range Analysis on z: |Original x Widened y'
0: z:=1; X0 = | yo = |

_1: while z<99 do Xt =1[1,1] y-, = [1,1]

| 2: Z := z+1 X2, =[1,1 y2, = [1,1

| 3: done /*z>99%/ X3, =[2,2 y3, = [2,2

| 4: XL21 = 1,2 yL21 = :1)+OO)
xt, =% the jth iterative attempt X3, = [2,+00)
to compute an abstract value for || yLl4 = [9Q +OO) yL4 — [99 +OO)
z at label Li 077 L ’

_ stable (fewer than 99 iterations!)

#45

Other Abstract Domains

e Linear relationships between variables
- A convex polyhedron is a subset of Zk whose elements
satisfy a number of inequalities:
aX, + a,X, +..+ax > C

- This is a complete lattice; linear programming methods
compute lubs

e Linear relationships with at most two variables
- Convex polyhedra but with < 2 variables per constraint
- Octagons (x +y > ¢) have efficient algorithms

e Modulus constraints (e.g. even and odd)

#46

Abstract Chatter

Al, Dataflow and Software Model Checking

- The big three (aside from flow-insensitive type systems)
for program analyses

Are in fact quite related:

- David Schmidt. Data flow analysis is model checking of
abstract interpretation. POPL ’98.

Al is usually flow-sensitive (per-label answer)

Al can be path-sensitive (if your abstract domain
includes Vv, for example), which is just where model
checking uses BDD’s

Metal, SLAM, ESP, ... can all be viewed as Al

#47

Abstract Interpretation
Conclusions

Al is a very powerful technique that underlies a
large number of program analyses

Al can also be applied to functional and logic
programming languages

There are a few success stories

- Strictness analysis for lazy functional languages
- PolySpace for linear constraints

In most other cases however Al is still slow

When the lattices have infinite height and widening
heuristics are used the result becomes unpredictable

#48

