MS Patch Tuesday - Plus ca change

o “ekye Digital Security has reported a vulnerability in
Windows Media Player ... due to a boundary error
within the processing of bitmap files (.bmp) and can
be exploited to cause a heap-based buffer overflow
via a specially crafted bitmap file that declares its

size as 0 ... exploitation allows execution of arbitrary
code”

* Six of seven “critical” or “important” bugs were
found by people outside of Microsoft

NEXT, ON EYEWITHESS ACTion| | WELL GET THE STORY FRomt | | THATS EYEWITMESS ACTION
NEWS © BLOOD-SPATTERED | [THE LINING ROOMS OF SOBRING,| | NEWS! 1S HH&TW/J/

SIDEWALKS AND SHROUD- HYSTERICAL RELATWES AMD NEED T KNOW -
COVERED BODIES ! CouLD WELL TELL You Wi Yo A I~

THE MEXT VICTIM BE YOU2> || SHOULD BE PARALVIZED j_

WITH HELPLESS FEMR!

Apologies to
Ralph Macchio

Daniel: You're supposed to teach
and I'm supposed to learn. Four
homeworks I've been working on
IMP, | haven't learned a thing.

Miyagi: You learn plenty.

Daniel: | learn plenty, yeah. |
learned how to analyze IMP,
maybe. | evaluate your
commands, derive your
judgments, prove your soundness.
| learn plenty!

Miyagi: Not everything is as
seems.

Daniel: You’re not even relatively
complete! I'm going home, man.
Miyagi: Daniel-san!

Daniel: What?

Miyagi: Come here. Show me
“compute the VC”.

C‘Wsimun.mm

Abstract Interpretation
(Non-Standard Semantics)

a.k.a.
“Picking The Right Abstraction”

GRAPHIC YIQLENCE
N THE MeDIA. \

—

-+

DOES 1T GLAMORIZE
VIOLENCE? SURE. DOES IT
PESENSITIZE US TO VIOLENCE?
OF COURSE. DOES 1T HELP
US TOLERATE VIOLENCE?
You BET, DOES \T STUNT
OUR, EMPATHY FOR CUR
FELLOW BEINGS 7 HECK YES.

DOES \T CAUSE WIOLENCE?

THE TRICK 1S
TO ASK THE
RIGHT GUESTION.

The Problem

It is extremely useful to predict program behavior
statically (= without running the program)

- For optimizing compilers, program analyses, software
engineering tools, finding security flaws, etc.

The semantics we studied so far give us the precise
behavior of a program

However, precise static predictions are impossible
- The exact semantics is not computable

We must settle for approximate, but correct, static
analyses (e.g. VC vs. WP)

HA4

The Plan

 We will introduce abstract
interpretation by example

e Starting with a miniscule language we
will build up to a fairly realistic
application

e Along the way we will see most of the
ideas and difficulties that arise in a big
class of applications

H#H5

A Tiny Language

» Consider the following language of arithmetic
(“shriMP’’?)

e:=n|e *e
 The denotational semantics of this language
[n] =
e, " &, = [e;] x [&)]
o We’ll take deno-sem as the “ground truth”

e For this language the precise semantics is
computable (but in general it’s not)

An Abstraction

e Assume that we are interested not in the
value of the expression, but only in its sign:

- positive (+), negative (-), or zero (0)

e We can define an abstract semantics that
computes only the sign of the result

o. Exp — {-, 0, +}

®

a(n) = sign(n)
a(e, " e) =0(e) ® a(e,)

o O O | O

| Saw the Sign fadh adad 1T Wk
 Why did we want to compute the sign of an
expression?

- One reason: no one will believe you know abstract
interp if you haven’t seen the sign thing

 What could we be computing instead?
- Alex Aiken was here ...

IF I HAD A COMPUTER, | /7 YOUD STILL HAVE TO READ THE

IM SURE 1D GET " BOOK AND TELL @«M. WHAT'S AL T‘AE)
BETTER GRATES ON THE COMPUTER 7 FUSS ABONT COMPUTERS 7/
MY BOOK EEFORTS. e .
—

WHAT MOU WANT
|

W5

*

Correctness of Sign Abstraction

e We can show that the abstraction is correct in
the sense that it predicts the sign

le]
le]
le]

>0« a(e) =+
=0< a(e)=0
<0< a(e) =-

e Our semantics is abstract but precise

e Proof is by structural induction on the
expression e

- Each case repeats similar reasoning

H#O

Another View of Soundness

e Link each concrete value to an abstract one:
B:Z—>{-0,+}
e This is called the abstraction function ([3)
- This three-element set is the abstract domain
* Also define the concretization function (y):
v:{-, 0, +} = P(Z)
v+) = {n€Z|n>0;
yO = {0}
y(-) = {neZ|n<0}

#10

Another View of Soundness 2

e Soundness can be stated succinctly
Ve € Exp. [e] € y(a(e))

(the real value of the expression is among the concrete
values represented by the abstract value of the expression)

e Let C be the concrete domain (e.g. Z) and A be the
abstract domain (e.g. {-, 0, +})

 Commutative diagram: Exp o A

['] Y

#11

Another View of Soundness 3

e Consider the generic abstraction of an operator

o(e, op €,) = 0(e,) 0P O (&)

e This is sound iff
Va,vVa,. y(a, op a,) > {nh,opn, | n, € y(@,), n, € y(a,)}

eeg. V@ ®a,)D2 {n*n, | nevy@),n eva)}

e This reduces the proof of correctness to one proof
for each operator

H#12

Abstract Interpretation

e This is our first example of an abstract
interpretation

 We carry out computation in an abstract
domain

 The abstract semantics is a sound
approximation of the standard semantics

e The concretization and abstraction functions
establish the connection between the two
domains

#13

Adding Unary Minus and Addition

* We extend the language to 0
e:'=nle-e|-e
: o+ 0
» We define o(- e) = © o(e)
D 0 +
-7
 Now we add addition: 0]- 0 +
ei=nle”e |-e|e+eg t]7 o+ 4

« We define o(e, + e,) = a(e,) & a(e,)

H#14

Adding Addition

e The sign values are not closed under addition

 What should be the value of “+ @ -”7?

e Start from the soundness condition:
V+®-)2{n +n,|n>0,n<0}=%

e We don’t have an abstract

value whose concretization

includes Z, so we add one:
T (“top” = “don’t know”)

D

0

+

T

+

+

0
-+
|

#15

Loss of Precision

o Abstract computation may lose information:
[(1+2)+-3]=0
but: o((1+2) + -3) =
(a(1) & a(2)) & o(-3) =
(+®+)®-=T
 We lost some precision

e But this will simplify the computation of the
abstract answer in cases when the precise
answer is not computable

#16

Adding Division

o Straightforward except for division by O
- We say that there is no answer in that case

- YV+20)={n|n=n/0,n>03}=0
e Introduce L to be the abstraction of the)

- We also use the same
abstraction for
non-termination!

= “nothing”

= “something unknown”

O

0

+

+ 0
1
0

+

H#17

The Abstract Domain
e Qur abstract domain forms a lattice
o A partial order is induced by vy
a, <a, iffy(a,) Cv@,)
- We say that a, is more precise than a,!

e Every finite subset has a least-upper =

bound (lub) and a greatest-lower bound (glb)

{ES, CALVINGD 40 UANE TEAH, 1 WAS WOMDERMG IF | OF COURSE HOT, HOW ABOUT
JUST ME THEM?
]

B GUESTION? WE TOULD STOP THE HoR THEN, LET'S

LESSON HERE AMD RADIOURM | ML TURM TO PRGE
™ THE PLMGROWMD FOR

TVE REST OF TME DaY
I

Lattice Facts

e A lattice is complete when every subset has a
lub and a gub

- Even infinite subsets!
e Every finite lattice is (trivially) complete

* Every complete lattice is a complete partial
order (recall: denotational semantics!)

- Since a chain is a subset

* Not every CPO is a complete lattice
- Might not even be a lattice

#19

Lattice History

» Early work in denotational semantics used
lattices (instead of what?)

- But only chains need to have lubs
- And there was no need for T and glb

 In abstract interpretation we’ll use T to
denote “/ don’t know”.

- Corresponds to all values in the concrete domain

#20

From One, Many

 We can start with the abstraction function 3
B:C—oA
(maps a concrete value to the best abstract value)
- A must be a lattice

 We can derive the concretization function y
v:A— PC)
y@) ={xeC|Bkx)<a}
 And the abstraction for sets a
a:PIC)—A
a(S) =lub {B(x) | xeS}

H#21

Example

o Consider our sign lattice

+ ifn>0
B(n) =)0 ifn=0
\ ifn<0
* a(5) =lub{B(x) | xe5}

- Example: a ({1, 2}) =lub{+} =+
a ({1, 0}) =lub{+, 0} =T
a (1) = lub {3 =1
v@) ={nl|B(n)<a}
- Example:y(+)= {n|B(n) <+} =
in | B(n)=+; ={n|in>0}

y(T)y=tn|pBn)<T;i=Z
y(L)={n|Bn)<L}=10

H#H22

Galois Connections

 We can show that
- yand a are monotonic (with C ordering on P(C))
- a(y(@)) =a forall a € A
- y(a(S)) 25 for all S € P(C)

e Such a pair of functions is called a Galois
connection
- Between the lattices A and P(C)

S —C
v(a(S))%;\ >

#23

Correctness Condition

e In general, abstract interpretation satisfies
the following (amazingly common) diagram

0 abstract semantics

I
” Y Q (S)

! ! abstraction
function for sets
concrete C ,73(C)
domain E

concretization
function

#24

Three Little Correctness Conditions

e Three conditions define a
correct abstract interpretation
“WELL-LOVED TALES’

e aandyare monotor.nc : The Three
e o andyform a Galois L;tﬁl - Pio el

connection
= “a and y are almost inverses”

4. Abstraction of operations is
correct

a, op a, = a(y(a,) op y(a,))

Homework

e Homework 4 Due Today
e Homework 5 Out Today
 Read Ken Thompson Turing Award

#26

