Symbolic Execution

TELL ME YOU'RE
KIDDING. N

BY THE DIORAMA,
| THINKE WE SHOULD

Copyright 200E Hans Ejordahl

T COULD RESTRUCTURE | | EH, SCREW (GO0D PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN 1T BE?

OR USE ONE LITILE goto main-sub3;
GOTD, INSTEAD o

; :r lz' *COMPILE*

Wei Hu Memorial Homework Award

e Many turned in HW3 code like this:
let rec matches re s = match re with
| Star(r) -> union (singleton s)
(matches (Concat(r,Star(r))) s)
e Which is a direct translation of:

R[r*]s = {s} U R[rr*]s

or, equivalently:

R[FFs={s}uiy | IxeR[r|s A y e R[r*]|x}
« Why doesn’t this work?

#2

Today’s Cunning Plan

e Symbolic Execution & Forward VCGen
e Handling Exponential Blowup

- Invariants

- Dropping Paths
e VCGen For Exceptions (double trouble)
e VCGen For Memory (McCarthyism)
e VCGen For Structures (have a field day)

e VCGen For “Dictator For Life”

#3

Simple Assembly Language

e Consider the language of instructions:
| ::= x:=e | f()|ifegotoL | gotolL |
L: | return | inv e

e The “inv €” instruction is an annotation
- Says that boolean expression e holds at that point

« Each function f() comes with Pre, and Post,
annotations (pre- and post-conditions)

« New Notation (yay!): |, is the instruction at
address k

#4

Symex States

« We set up a symbolic execution state:

> . Var — SymbolicExpressions

> (X) = the symbolic value of x in state X
>[x:=e] = a new state in which x’s value is e
e We use states as substitutions:

> (e) - obtained from e by replacing x with >(x)
e Much like the opsem so far ...

#5

Symex Invariants

e The symbolic executor tracks invariants
passed

e A new part of symex state: Inv C {1...n}

o If k € Inv then | _is an invariant instruction
that we have already executed

e Basic idea: execute an inv instruction only
twice:

- The first time it is encountered
- Once more time around an arbitrary iteration

#6

VC(k, Z, Inv) =

Symex Rules

e Define a VC function as an interpreter:
VC : Address x SymbolicState x InvariantState — Assertion

VC(L, Z, Inv)

if | =goto L

e = VC(L, Z, Inv) A

- e = VC(k+1, Z,

Inv)

if | =if e goto L

VC(k+1, Z[x:=2(e)], Inv) ifl =x:=e
Z(POStcurrent-function)]f Ik = return
2(Pre;) A
Va,..a_ .2’ (Post,) =

VC(k+1, 2, Inv) if 1, = ()

(Wherey,, ..., y.. are modified by f)

and a,, ..., a_, are fresh parameters

and 2’ = 2Jy, := a,, ...

y Y o= A]

#7

Symex Invariants (2a)

Two cases when seeing an invariant instruction:
1. We see the invariant for the first time

|, =1nv e
kK Ilnv (= “not in the set of invariants we’ve seen”)

Let {y,, ..., ¥..} = the variables that could be modified on
a path from the invariant back to itself

Let a,, ..., a_, be fresh new symbolic parameters

VC(K, =, Inv) =

>(e) A Va,..a_. 2’(e) = VC(k+1, 2, Inv U {k}])

with 2’ =2Jy. :=a,, ..., y_:=a_]

(like a function call)

Symex Invariants (2b)

We see the invariant for the second time

|, =1nv E
kK € Inv

VC(k, Z, Inv) = 3(e)

(like a function return)

Some tools take a more simplistic approach

Do not require invariants
Iterate through the loop a fixed number of times

PREfix, versions of ESC (DEC/Compaq/HP SRC)
Sacrifice completeness for usability

#9

Symex Summary

- Let x,, ..., X, be all the variables and a,, ..., a, fresh
parameters

- Let 2, be the state [x, :=a,, ...,X :=a]
- Let () be the empty Inv set
For all functions f in your program, prove:
Va,...a,. 2,(Pre)) = VC(f, ., 2o, 1)
If you start the program by invoking any f in a state
that satisfies Pre;, then the program will execute

such that
- At all “inv e” the e holds, and
- If the function returns then Post. holds

Can be proved w.r.t. a real interpreter (operational
semantics)

Or via a proof technique called co-induction (or,
assume-guarantee)

#10

Forward VCGen Example

« Consider the program
Precondition: x <0
Loop: invx <6
if x > 5 goto End
X =X+ 1
goto Loop
End: return Postconditon: x = 6

#11

Forward VCGen Example (2)

VX.
X<0=
X <6 A
VX’
X’ <6=
X’>5=x"=6
A\

X <Hh=x"+1<6)

e VC contains both proof obligations and
assumptions about the control flow

#12

VCs Can Be Large

Consider the sequence of conditionals
(if x < 0 then x := - x); (if x < 3 then x += 3)
- With the postcondition P(x)

The VC is
X<O0OA-x<3 0O P(-x+3) A
X<O0A-x>3 0O P(-x) A
Xx20AXx<3 O P(x+3) A

x=20AXx>3 0O P(x)
There is one conjunct for each path
= exponential number of paths!
- Conjuncts for infeasible paths have un-satisfiable guards!
Try withP(x) =x = 3

#13

VCs Can Be Exponential

e VCs are exponential in the size of the source
because they attempt relative completeness:

- Perhaps the correctness of the program must be argued
independently for each path

e Unlikely that the programmer wrote a program by
considering an exponential number of cases

- But possible. Any examples? Any solutions?

PROBLEMS OFTEN LOOK THE SECRET 15 TO BREAK | | FOR EXAMPLE, I'M SUPPOSED | | Yoy FOCUS [ASK
OVERWHELMING AT FIRST. | | PROBLEMS INTO SMALL, || TO READ THIS ENTIRE N READING | MYSELF,
MANAGEABLE CHUNKS. HISTORY CHAPTER. IT LOOKS|| THE FIRST | "Do I EVEM
\F You DEAL WITH THOSE, | | IMPOSSIBLE, SO T BREAK SECTION? CARE?"
YOURE DonE BEFORE You) THE PROBLEM DOWN. 1

VCs Can Be Exponential

e VCs are exponential in the size of the source
because they attempt relative completeness:

- Perhaps the correctness of the program must be
argued independently for each path

« Standard Solutions:
- Allow invariants even in straight-line code
- And thus do not consider all paths independently!

#15

Invariants in Straight-Line Code

Purpose: modularize the verification task
Add the command “after c establish Inv”
- Same semantics as c (Inv is only for VC purposes)

VC(after c establish Inv, P) =,
VC(c,Inv) O x. InvJ P

« Where x. are the ModifiedVars(c)

Use when c contains many paths
after if x < 0 then x := - x establish x = 0;
if x<3 thenx +=3 {P(x)}

VC is now:
(x<00O -x20A x=200 x=20)A

Ox.x=200 (x<30O P(x+3) A x>30 P(x))
#16

Dropping Paths

In absence of annotations, we can drop some paths

VC(if E then c, else c,, P) = choose one of

- E0O VC(c,, P)O=-EDO VC(c,, P) (drop no paths)

- B0 VC(c,, P) (drops “else” path!)
-E 0 VC(c,, P) (drops “then” path!)

We sacrifice soundness! (we are now unsound)

- No more guarantees

- Possibly still a good debugging aid

Remarks:

- A recent trend is to sacrifice soundness to increase
usability (e.g., Metal, ESP, even ESC)

- The PREfix tool considers only 50 non-cyclic paths
through a function (almost at random)

#17

VCGen for Exceptions

 We extend the source language with
exceptions without arguments (cf. HW2):

- throw throws an exception
- try ¢, catch ¢, executes ¢, if c, throws

e Problem:

- We have non-local transfer of control
- What is VC(throw, P) ?

#18

VCGen for Exceptions

 We extend the source language with
exceptions without arguments (cf. HW2):

- throw throws an exception
- try ¢, catch ¢, executes ¢, if ¢, throws
e Problem:

- We have non-local transfer of control
- What is VC(throw, P) ?
e Standard Solution: use 2 postconditions
- One for normal termination
- One for exceptional termination

#19

VCGen for Exceptions (2)

e VC(c, P, Q) is a precondition that makes c
either not terminate, or terminate normally
with P or throw an exception with Q

e Rules
VC(skip, P, Q) =P
vC(c,; ¢,, P, Q) =VC(c,, VC(c,, P, Q), Q)
VC(throw, P, Q) =Q
VC(try c, catch ¢,, P, Q) = VC(c,, P, VC(c,, P, Q))
VC(try c, finally ¢,, P, Q) =7

#20

VCGen Finally

e Given these:
vC(c,; ¢,, P, Q) =VC(c,, VC(c,, P, Q), Q)
VC(try c, catch ¢,, P, Q) = VC(c,, P, VC(c,, P, Q))
e Finally is somewhat like “if”:
VC(try c, finally ¢,, P, Q) =
VC(c,, VC(c,, P, Q), true) A
VC(c,, true, VC(c,, Q, Q))
 Which reduces to:

VC(c,, VC(c,, P, Q), VC(c,, Q, Q))

#21

Hoare Rules and the Heap

 When is the following Hoare triple valid?
fA}Y*X:=5{"x+%y =10}
e Ashould be “*y =5o0orx =y”
e The Hoare rule for assignment would give us:
- [5/*%](*x +*y =10) =5+ *y =10 =
- *y =5 (we lost one case)
e Why didn’t this work?

OH GOOD, A TRUE QR AT LAST, SOME CLARITY! BVERY
., FALSE TEST?! - SENTEMCE |S EVTHER PURE,
= SWEET TRuTH OR A VILE,

f CONTEMPTIBLE LIE! ONE
OR THE OTHER ! NOTHING
IN BETWEEN /

Handling The Heap

e We do not yet have a way to talk about
memory (the heap, pointers) in assertions

e Model the state of memory as a symbolic
mapping from addresses to values:

- If A denotes an address and M is a memory state

then:
- sel(M,A) denotes the contents of the memory cell

- upd(M,A,V) denotes a new memory state obtained
from M by writing V at address A

#23

More on Memory

« We allow variables to range over memory
states

- We can quantify over all possible memory states

e Use the special pseudo-variable p (mu) in
assertions to refer to the current memory

e Exam

dle:

1.120

says t

1<5

sel(p, A+1) >0

nat entries 0..4 in array A are positive

#24

Hoare Rules: Side-Effects

e To model writes we use memory expressions
- A memory write changes the value of memory

{ Blupd(u, A, E)/p] } *A := E {B}

e Important technique: treat memory as a whole

e And reason later about memory expressions with
inference rules such as (McCarthy Axioms, ~‘67):

v if A, = A,
sel(M, A) ifA #A

sel(upd(M, A,, V), A,) = {

#25

Memory Aliasing

e Consider again: { A} *x:=5{*x+*y =10}
« We obtain:

= [upd(U, X, 5)/u] (*x +*y = 10)

= [upd(y, X, 5)/4] (sel(y, x) + sel(y, y) = 10)
(1) =sel(upd(u, X, 5), x) + sel(upd(y, X, 5), y) =10

=5 + sel(upd(M, X, 5), y) =10

=if x =y then 5 + 5 =10 else 5 + sel(y, y) = 10

(2) =x=yor*y=>5
e Up to (1) is theorem generation
e From (1) to (2) is theorem proving

#26

Alternative Handling for Memory

e Reasoning about aliasing can be expensive
- It is NP-hard (and/or undecideable)

e Sometimes completeness is sacrificed with
the following (approximate) rule:

-V if A, = (obviously) A,

sel(M, A,) if A £ (obviously) A,

D otherwise (p is a fresh

\ new parameter)
« The meaning of “obviously” varies:

e The addresses of two distinct globals are #

sel(upd(M, A, V), A;) = <

e The address of a global and one of a local are #

e« PREfix and GCC use such schemes
#27

VCGen Overarching Example

e Consider the program
- Precondition: B : bool [JA : array(bool, L)
1:1:=0
R:=B

3:invl =0 [JR : bool
if | > L goto 9
assert saferd(A + 1)
T:=*A+1)
| :=1+1
R:=T
goto 3

9: return R

- Postcondition: R : bool
#28

VCGen Overarching Example

VA. VB. VL. VU
B : bool A A: array(bool, L) =
0>0AB: bool A
VI. VR.
| > 0AR: bool =
| > L= R : bool
N
| < L = saferd(A +1) A
| +1>0A
sel(u, A +1) : bool

e VC contains both proof obligations and assumptions
about the control flow

#29

Mutable Records - Two Models

Let r: RECORD { f1: T1; f2: T2} END
For us, records are reference types

Method 1: one “memory” for each record

- One index constant for each field

- r.f1is sel(r,f1) and r.f1 := Eisr := upd(r,f1,E)
Method 2: one “memory” for each field

- The record address is the index

- r.f1is sel(f1,r) and r.f1 := Eis f1 := upd(f1,r,E)
Only works in strongly-typed languages like Java
- Fails in C where &r.f2 = &r + sizeof(T1)

#30

VC as a “Semantic Checksum”

 Weakest preconditions are an
expression of the program’s semantics:

- Two equivalent programs have logically
equivalent WPs

- No matter how different their syntax is!

e VC are almost as powerful

#31

VC as a “Semantic Checksum” (2)

« Consider the “assembly X '= 4
language” program to X 1= (x == 5)
the right assert x : bool

X .= not X
assert x

e High-level type checking is not appropriate here
e The VCis: ((4 ==5) : bool) LI (not (4 == 5))
e No confusion from reuse of x with different types

#32

Invariance of VC Across
Optimizations

e VC is so good at abstracting syntactic details that it
is syntactically preserved by many common
optimizations

- Register allocation, instruction scheduling
- Common subexp elim, constant and copy propagation
- Dead code elimination

 We have identical VCs whether or not an
optimization has been performed

- Preserves syntactic form, not just semantic meaning!

e This can be used to verify correctness of compiler
optimizations (Translation Validation)

#33

VC Characterize a Safe
Interpreter

e Consider a fictitious “safe” interpreter

- As it goes along it performs checks (e.g. “safe to read
from this memory addr”, “this is a null-terminated

b2 I 1 4

string”, “l have not already acquired this lock”)
- Some of these would actually be hard to implement

e The VC describes all of the checks to be performed
- Along with their context (assumptions from conditionals)

- Invariants and pre/postconditions are used to obtain a
finite expression (through induction)

o VC is valid = interpreter never fails

- We enforce same level of “correctness”
- But better (static + more powerful checks)

#34

o Verification conditions

VC Big Picture

- Capture the semantics of code + specifications
- Language independent

- Can be computed backward/forward on
structured/unstructured code

- Make Axiomatic Semantics practical

MISS WORMWOOD,
1 HANE A
QUESTION ABWT
THIS MATH
LESSON, .

GINEM THAT, SOOWER OR
LATER, WERE AlL JUST
GOING TO DIE, WHAT'S
THE POINT OF LEARNING

AROMT INTEGERS ?
P y ST

I
X b

| I

NOBODY LIKES US
"Big PICTURE"

PEOPLE .

Invariants Are Not Easy

e Consider the following code from QuickSort
int partition(int *a, int L,, int H,, int pivot) {
intL=1L, H=H,;
while(L < H) {
while(a[L] < pivot) L ++;
while(a[H] > pivot) H --;
if(L < H) { swap a[L] and a[H] }
}

return L

3
e Consider verifying only memory safety

 What is the loop invariant for the outer loop ?
#36

Done!

#37

