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Class Likes/Dislikes Survey
• + humor = 2
• + teaching style = 2
• + slides = 1
• + candy = 2
• + class takes place in afternoon = 1
• + class is interesting = 3
• + students help solve some examples = 1
• + prewritten ML code = 1
• + material is fundamental and relevant = 1
• - only one small-step lecture before HW due = 1
• - too much reading = 1
• - class takes place in afternoon = 1
• - too much pieter = 1
• - not enough pieter = 1
• - clicker = 1
• - lecture pace is too fast (too much material) = 1



  

Lie To Me, Giles

• HW2 due Thursday (not Today)
• Buffy: Does it ever get easy?

• Giles: You mean life?

• Buffy: Yeah. Does it get easy?

• Giles: What do you want me to say?

• Buffy: Lie to me.

• Giles: Yes, it's terribly simple. The good guys are always 
stalwart and true, the bad guys are easily distinguished by 
their point horns or black hats. We always defeat them and 
save the day. No one ever dies, and everybody lives happily 
ever after.

• Buffy: Liar. 



  

But first!

• Recall our proof that the large-step opsem rules for 
IMP are deterministic

• If <c, σ> ⇓ σ’ and <c, σ> ⇓ σ’’ then σ’=σ’’
• Proof by induction on the structure of the 

derivation
• If <c, σ> ⇓ σ’ then D::<c, σ> ⇓ σ’
• If <c, σ> ⇓ σ’’ then D’’::<c, σ> ⇓ σ’
• D and D’’ are the derivations!
• What was the last rule used in D? 
• By the inductive hypothesis, we can assume the property 

holds for sub-derivations of D



  

Induction on Derivations (3)
• Case: the last rule used in D was the one for 

sequencing

• Pick arbitrary σ’’ such that D’’ :: <c1; c2, σ> ⇓ σ’’.  
– by inversion D’’ uses the rule for sequencing
– and has subderivations D’’1 :: <c1, σ> ⇓ σ’’1 and                   

D’’2 :: <c2, σ’’1> ⇓ σ’’ 

• By induction hypothesis on D1 (with D’’1): σ1 = σ’’1

– Now D’’2 :: <c2, σ1> ⇓ σ’’

• By induction hypothesis on D2 (with D’’2): σ’’ = σ’
• This is a simple inductive case

<c1; c2, σ> ⇓ σ’
D ::

D1 :: <c1, σ> ⇓ σ1    D2 :: <c2, σ1> ⇓ σ’



  

Induction on Derivations (4)
• Case: the last rule used in D was while true

• Pick arbitrary σ’’ s.t. D’’::<while b do c, σ> ⇓ σ’’
– by inversion and determinism of boolean expressions, D’’ 

also uses the rule for while true

– and has subderivations D’’2 :: <c, σ> ⇓ σ’’1 and               
D’’3 :: <W, σ’’1> ⇓ σ’’ 

• By induction hypothesis on D2 (with D’’2): σ1 = σ’’1

– Now D’’3 :: <while b do c, σ1> ⇓ σ’’

• By induction hypothesis on D3 (with D’’3): σ’’ = σ’

<while b do c, σ> ⇓ σ’
D ::

D1 :: <b, σ> ⇓ true    D2 :: <c, σ> ⇓ σ1      D3 :: <while b do c, σ1> ⇓ σ’



  

What Do You, 
The Viewers At Home, Think?

• Let’s do if true together!
• Case: the last rule in D was if true

• Try to do this on a piece of paper. In a few 
minutes I’ll have some lucky winners come 
on down.

<if b do c1 else c2, σ> ⇓ σ1

D ::
D1 :: <b, σ> ⇓ true                             D2 :: <c1, σ> ⇓ σ1



  

Induction on Derivations (5)

• Case: the last rule in D was if true

• Pick arbitrary σ’’ such that     
D’’ :: <if b do c1 else c2, σ> ⇓ σ’’
– By inversion and determinism, D’’ also uses if true

– And has subderivations D’’1 :: <b, σ> ⇓ true and D’’2 

:: <c1, σ> ⇓ σ’’

• By induction hypothesis on D2 (with D’’2): σ’ = σ’’

<if b do c1 else c2, σ> ⇓ σ’
D ::

D1 :: <b, σ> ⇓ true                             D2 :: <c1, σ> ⇓ σ’



  

Induction on Derivations
Summary

• If you must prove ∀x ∈ A. P(x) ⇒ Q(x)
– A is some structure (e.g., AST), P(x) is some property

– we pick arbitrary x ∈ A and D :: P(x)

– we could do induction on both facts
• x ∈ A         leads to induction on the structure of x

• D :: P(x) leads to induction on the structure of D

– Generally, the induction on the structure of the 
derivation is more powerful and a safer bet

• Sometimes there are many choices for induction
– choosing the right one is a trial-and-error process
– a bit of practice can help a lot



  

Summary of 
Operational Semantics

• Precise specification of dynamic semantics
– order of evaluation (or that it doesn’t matter)
– error conditions (sometimes implicitly, by rule 

applicability; “no applicable rule” = “get stuck”)
• Simple and abstract (vs. implementations)

– no low-level details such as stack and memory 
management, data layout, etc.

• Often not compositional (see while)
• Basis for many proofs about a language

– Especially when combined with type systems!
• Basis for much reasoning about programs
• Point of reference for other semantics



  

Dueling Semantics

• Operational semantics is
– simple
– of many flavors (natural, small-step, more or less 

abstract)
– not compositional
– commonly used in the real (modern research) world

• Denotational semantics is
– mathematical (the meaning of a syntactic expression is 

a mathematical object)
– compositional

• Denotational semantics is also called: fixed-point 
semantics, mathematical semantics, Scott-Strachey 
semantics



  

Typical Student Reaction To 
Denotation Semantics



  

Denotational Semantics
Learning Goals

• DS is compositional (!)
• When should I use DS? 
• In DS, meaning is a “math object”
• DS uses ? (“bottom”) to mean non-

termination
• DS uses fixed points and domains to 

handle while
– This is the tricky bit



  

You’re On Jeopardy!You’re On Jeopardy!

Alex Trebek: Alex Trebek: 
“The answer is: “The answer is: 
this property of this property of 
denotational denotational 
semantics …” semantics …” 



  

DS In The Real World

• ADA was formally specified with it
• Handy when you want to study non-trivial 

models of computation
– e.g., “actor event diagram scenarios”, 

process calculi

• Nice when you want to compare a program 
in Language 1 to a program in Language 2



  

Deno-Challenge
•You may skip homework 

assignment 3 or 4 if you can 
find two (2) post-1999 papers 
in first- or second-tier PL 
conferences that use 
denotational semantics and 
you write me a two paragraph 
summary of each paper.



  

Foreshadowing

• Denotational semantics assigns meanings to 
programs

• The meaning will be a mathematical object
– A number a 2 Z
– A boolean b 2 {true, false}
– A function c : Σ ! (Σ [ {non-terminating})

• The meaning will be determined compositionally
– Denotation of a command is based on the denotations of 

its immediate sub-commands (= more than merely 
syntax-directed)



  

New Notation

• ‘Cause, why not?
« ¬ = “means” or “denotes”

• Example:
«foo¬ = “denotation of foo”
«3 < 5¬ = true
«3 + 5¬ = 8

• Sometimes we write A«¢¬ for arith,  B«¢¬ for 
boolean, C«¢¬ for command



  

Rough Idea of 
Denotational Semantics

• The meaning of an arithmetic expression e in 
state σ is a number n

• So, we try to define A«e¬ as a function that maps 
the current state to an integer:

                    A«¢¬ : Aexp ! (Σ ! Z) 
• The meaning of boolean expressions is defined in 

a similar way
                    B«¢¬ : Bexp ! (Σ ! {true, false})
• All of these denotational function are total

– Defined for all syntactic elements
– For other languages it might be convenient to define 

the semantics only for well-typed elements



  

Denotational Semantics of 
Arithmetic Expressions

• We inductively define a function
A«¢¬ : Aexp ! (Σ ! Z)

A«n¬ σ = the integer denoted by literal n
A«x¬ σ = σ(x)
A«e1+e2¬ σ = A«e1¬σ + A«e2¬σ
A«e1-e2¬ σ = A«e1¬σ - A«e2¬σ
A«e1*e2¬ σ = A«e1¬σ * A«e2¬σ

• This is a total function (= defined for all 
expressions)



  

Denotational Semantics of 
Boolean Expressions

• We inductively define a function
              B«¢¬ : Bexp ! (Σ ! {true, false})

B«true¬σ = true

B«false¬σ = false
B«b1 Æ b2¬σ = B«b1¬ σ Æ B«b2¬ σ
B«e1 = e2¬σ = if A«e1¬ σ = A«e2¬ σ 
					then true else false



  

Seems Easy So Far



  

Denotational Semantics for 
Commands

• Running a command c starting from a state 
σ yields another state σ’

• So, we try to define C«c¬ as a function that 
maps σ to σ’

C«¢¬ : Comm ! (Σ ! Σ)

• Will this work? Bueller? 



  

? = Non-Termination

• We introduce the special element ? to 
denote a special resulting state that 
stands for non-termination

• For any set X, we write 
X? to denote X [ {?}

Convention: 
    whenever f 2 X ! X? we extend f to    

X? ! X? so that f(?) = ? 
– This is called strictness



  

Denotational Semantics of 
Commands

• We try:
C«¢¬ : Comm ! (Σ ! Σ?)

C«skip¬ σ = σ
C«x := e¬ σ = σ[x := A«e¬ σ] 
C«c1; c2¬ σ = C«c2¬ (C«c1¬ σ)

C«if b then c1 else c2¬ σ = 

if B«b¬σ then C«c1¬σ else C«c2¬σ
C«while b do c¬ σ = ?



  

Examples

• C«x:=2; x:=1¬ σ = 
σ[x := 1]

• C«if true then x:=2; x:=1 else …¬ σ =
σ[x := 1]

• The semantics does not care about 
intermediate states (cf. “big-step”)

• We haven’t used ? yet



  

Denotational Semantics of WHILE
• Notation: W = C«while b do c¬
• Idea: rely on the equivalence (see end of notes)

while b do c ≈ if b then c; while b do c else skip
• Try

W(σ) = if B«b¬σ then W(C«c¬σ) else σ

• This is called the unwinding equation
• It is not a good denotation of W because:

– It defines W in terms of itself
– It is not evident that such a W exists
– It does not describe W uniquely
– It is not compositional



  

More on WHILE

• The unwinding equation does not specify W 
uniquely

• Take C«while true do skip¬

• The unwinding equation reduces to W(σ) =  
W(σ), which is satisfied by every function!

• Take C«while x ≠ 0 do x := x – 2¬

• The following solution satisfies equation (for 
any σ’)



  

Denotational Game Plan

• Since WHILE is recursive
– always have something like: W(σ) = F(W(σ))

• Admits many possible values for W(σ)
• We will order them

– With respect to non-termination = “least”

• And then find the least fixed point
• LFP W(σ)=F(W(σ)) == meaning of “while”



  

WHILE k-steps Semantics

• Define Wk: Σ ! Σ? (for k 2 N) such that

• We can define the Wk functions as follows:

     

Wk(σ) =

otherwise?

if “while b do c” in state σ 
terminates in fewer than k 
iterations in state σ’

σ’

?W0(σ) =

Wk(σ) =
otherwiseσ
if B«b¬σ for k ¸ 1Wk-1(C«c¬σ)



  

WHILE Semantics

• How do we get W from Wk?

• This is a valid compositional definition of W
– Depends only on C«c¬ and B«b¬

• Try the examples again:
– For C«while true do skip¬

        Wk(σ) = ?   for all k, thus W(σ) = ?

– For C«while x ≠ 0 do x := x – 2¬

  

W(σ) =
otherwise?

if 9k.Wk(σ) = σ’ ≠ ?σ’

   W(σ) =
   otherwise   ?

   if σ(x) = 2n Æ σ(x) ¸ 0 σ[x:=0]



  

More on WHILE

• The solution is not quite satisfactory 
because
– It has an operational flavor (= “run the loop”)
– It does not generalize easily to more 

complicated semantics (e.g., higher-order 
functions)

• However, precisely due to the operational 
flavor this solution is easy to prove sound 
w.r.t operational semantics



  

That Wasn’t Good Enough!?



  

Simple Domain Theory
• Consider programs in an eager, 

deterministic language with one variable 
called “x”
– All these restrictions are just to simplify the 

examples

• A state σ is just the value of x
– Thus we can use Z instead of Σ

• The semantics of a command give the 
value of final x as a function of input x
                         C« c ¬ :  Z ! Z?



  

Examples - Revisited
• Take C«while true do skip¬

– Unwinding equation reduces to W(x) = W(x)
– Any function satisfies the unwinding equation
– Desired solution is W(x) = ?

• Take C«while x ≠ 0 do x := x – 2¬
– Unwinding equation: 
    W(x) = if x ≠ 0 then W(x – 2) else x
– Solutions (for all values n, m 2 Z?): 

     W(x) = if x ¸ 0 then 
                  if x even then 0 else n
                else m
– Desired solution: W(x) = if x ¸ 0 Æ x even then 0 else ?



  

An Ordering of Solutions 

• The desired solution is the one in which all the 
arbitrariness is replaced with non-termination
– The arbitrary values in a solution are not uniquely 

determined by the semantics of the code

• We introduce an ordering of semantic functions 

• Let f, g 2 Z ! Z?

• Define f v g  as
        8x 2 Z. f(x) = ? or f(x) = g(x) 

– A “smaller” function terminates at most as often, 
and when it terminates it produces the same result 



  

Alternative Views of 
Function Ordering

• A semantic function f 2 Z ! Z? can be 
written as Sf µ Z £ Z as follows:

            Sf = { (x, y) | x 2 Z, f(x) = y ≠ ? }  
– set of “terminating” values for the function

• If f v g then
–  Sf µ Sg (and vice-versa)

– We say that g refines f
– We say that f approximates g
– We say that g provides more information than f



  

The “Best” Solution

• Consider again C«while x ≠ 0 do x := x – 2¬
– Unwinding equation: 
    W(x) = if x ≠ 0 then W(x – 2) else x

• Not all solutions are comparable:
W(x) = if x ¸ 0 then if x even then 0 else 1 else 2
W(x) = if x ¸ 0 then if x even then 0 else ? else 3
W(x) = if x ¸ 0 then if x even then 0 else ? else ?  
   (last one is least and best)

• Is there always a least solution?
• How do we find it?
• If only we had a general framework for answering 

these questions …



  

Fixed-Point Equations
• Consider the general unwinding equation for while

while b do c ≡ if b then c; while b do c else skip

• We define a context C (command with a hole)
              C = if b then c; ² else skip
              while b do c ≡ C[while b do c]

– The grammar for C does not contain “while b do c”

• We can find such a (recursive) context for any 
looping construct
– Consider: fact n = if n = 0 then 1 else n * fact (n – 1)
– C(n) = if n = 0 then 1 else n * ² (n – 1)
– fact = C [ fact ]



  

Fixed-Point Equations

• The meaning of a context is a semantic functional 
    F : (Z ! Z?) ! (Z ! Z?) such that

 F «C[w]¬ = F «w¬

• For “while”: C = if b then c; ² else skip 
          F w x = if «b¬ x then w («c¬ x) else x
– F depends only on «c¬ and «b¬

• We can rewrite the unwinding equation for while
– W(x) = if «b¬ x then W(«c¬ x) else x 
– or, W x = F W x for all x, 
– or, W = F W (by function equality)



  

Fixed-Point Equations

• The meaning of “while” is a solution for W = F W
• Such a W is called a fixed point of F 
• We want the least fixed point 

– We need a general way to find least fixed points

• Whether such a least fixed point exists depends on 
the properties of function F
– Counterexample: F w x = if w x = ? then 0 else ?
– Assume W is a fixed point
– F W x = W x = if W x = ? then 0 else ?
– Pick an x, then if W x = ? then W x = 0 else W x = ?
– Contradiction. This F has no fixed point! 



  

Can We Solve This?

• Good news: the functions F that correspond 
to contexts in our language have least fixed 
points!

• The only way F w x uses w is by invoking it
• If any such invocation diverges, then F w x 

diverges!
• It turns out: F is monotonic, continuous

– Not shown here!



  

New Notation: λ

•  λx. e
– an anonymous function with body e and argument x 

• Example: double(x) = x+x
double = λx. x+x

• Example: allFalse(x) = false
allFalse = λx. false

• Example: multiply(x,y) = x*y

multiply = λx. λy. x*y



  

The Fixed-Point Theorem
• If F is a semantic function corresponding to a 

context in our language
– F is monotonic and continuous (we assert)
– For any fixed-point G of F and k 2 N
            Fk(λx.? ) v G
– The least of all fixed points is
           tk Fk(λx.?)

• Proof (not detailed in the lecture):
1. By mathematical induction on k.  
    Base: F0(λx.? ) = λx.? v G
    Inductive: Fk+1(λx.? ) = F(Fk(λx.? )) v F(G) = G
–  Suffices to show that tk Fk(λx.? ) is a fixed-point

              F(tk Fk(λx.? )) = tk Fk+1(λx.? ) = tk Fk(λx.? )



  

WHILE Semantics
• We can use the fixed-point theorem to write the 

denotational semantics of while:
     «while b do c¬ = tk Fk (λx.?)
             where F f x = if «b¬ x then f («c¬ x) else x
• Example: «while true do skip¬ = λx.?
• Example: «while x ≠ 0 then x := x – 1¬ 

– F  (λx.?) x = if x = 0 then x else  ?  
– F2 (λx.?) x = if x = 0 then x else if x–1 = 0 then x–1 else ? 
                  = if 1 ¸ x ¸ 0 then 0 else  ? 
– F3 (λx.?) x = if 2 ¸ x ¸ 0 then 0 else  ? 
– LFPF = if x ¸ 0 then 0 else ?

• Not easy to find the closed form for general LFPs!



  

Discussion

• We can write the denotational semantics but 
we cannot always compute it.
– Otherwise, we could decide the halting problem
– H is halting for input 0 iff «H¬ 0 ≠ ?

• We have derived this for programs with one 
variable
– Generalize to multiple variables, even to 

variables ranging over richer data types, even 
higher-order functions: domain theory



  

Can You Remember?
You just survived the hardest lectures in 615. 
It’s all downhill from here.



  

Recall: Learning Goals

• DS is compositional
• When should I use DS? 
• In DS, meaning is a “math object”
• DS uses ? (“bottom”) to mean non-

termination
• DS uses fixed points and domains to 

handle while
– This is the tricky bit



  

Homework

• Homework 2 Due Thursday
• Homework 3 Out Thursday

– Not as long as it looks – separated out every 
exercise sub-part for clarity. 

– Your denotational answers must be 
compositional (e.g., Wk(σ) or LFP) 

• Read Winskel Chapter 6 for Tue Sep 25
• Read Hoare article for Tue Sep 25
• Read Floyd article for Tue Sep 25



  

Equivalence

• Two expressions (commands) are equivalent if 
they yield the same result from all states

e1 ≈ e2 iff 

∀σ ∈ Σ. ∀n ∈ N. 

<e1, σ> ⇓ n iff <e2, σ> ⇓ n

   and for commands
c1 ≈ c2 iff

∀σ, σ’ ∈ Σ. 
<c1, σ> ⇓ σ’ iff <c2, σ> ⇓ σ’



  

Notes on Equivalence

• Equivalence is like logical validity 
– It must hold in all states (= all valuations)
– 2 ≈ 1 + 1 is like “2 = 1 + 1 is valid”
– 2 ≈ 1 + x might or might not hold. 

• So, 2 is not equivalent to 1 + x

• Equivalence (for IMP) is undecidable
– If it were decidable we could solve the halting problem 

for IMP. How?
• Equivalence justifies code transformations

– compiler optimizations
– code instrumentation
– abstract modeling

• Semantics is the basis for proving equivalence



  

Equivalence Examples
• skip; c ≈ c 
• while b do c ≈ 

if b then c; while b do c else skip
• If e1 ≈ e2 then x := e1 ≈ x := e2

• while true do skip ≈ while true do x := x + 1
• If c is 

while x ≠ y do
     if x ≥ y then x := x - y else y := y - x

    then (x 
:= 221; y := 527; c) ≈ (x := 17; y := 17)



  

Potential Equivalence

•(x := e1; x := e2) ≈ x := e2

•Is this a valid equivalence?

`



  

Not An Equivalence

• (x := e1; x := e2) ¿ x := e2

• Iie. Chigau yo. Dame desu!

• Not a valid equivalence for all e1, e2.

• Consider:
– (x := x+1; x := x+2) ¿ x := x+2

• But for n1, n2 it’s fine:

– (x := n1; x := n2) ≈ x := n2



  

Proving An Equivalence

• Prove that “skip; c  ≈  c” for all c

• Assume that D :: <skip; c, σ> ⇓ σ’

• By inversion (twice) we have that

• Thus, we have D1 :: <c,σ> ⇓ σ’

• The other direction is similar

<skip; c, σ> ⇓ σ’
D ::

   <skip, σ> ⇓ σ    D1 :: <c, σ> ⇓ σ’



  

Proving An Inequivalence

• Prove that x := y ¿ x := z when y !=≠z

• It suffices to exhibit a σ in which the two 
commands yield different results

• Let σ(y) = 0 and σ(z) = 1
• Then 

<x := y, σ> ⇓ σ[x := 0]
<x := z, σ> ⇓ σ[x := 1]


