Proof Techniques
for Operational
Semantics

Small-Step
Contextual Semantics

 In small-step contextual semantics,
derivations are not tree-structured

e A contextual semantics derivation is a
sequence (or list) of atomic rewrites:

<x+(7-3),0> — <x+(4),0> 7 <5+4,0> — <9,0>

o(x)=5

If <r, 0> - <e, 0’> S——"
then <H[r], 6> - <H[e], o’> H = context (has hole)

Unique Next Redex:
Proof By Handwaving Examples

e €.8. C=“c,; ¢,” - either
- ¢, = skip and then c = H[skip; c,] with H =«
- or ¢, = skip and then c, = H[r]; so c = H’[r] with H’
=H; ¢,
o €.g. c = “if b then c, else ¢,”

- either b = true or b = false and then c = H[r] with
H=e

- or b is not a value and b = HJr]; so c = H’[r] with
H’ = if H then ¢, else ¢,

Context Decomposition

e Decomposition theorem:

If c is not “skip” then there exist unique
H and r such that c is H[r]

- “Exist” means progress

- “Unique” means determinism

DO YO BELIEYE Yoiy MEAN, THET CUR YEAH . THET THE THINGS | [/ WHaT &
? [NES BRY PREDESINED 7} | WE DO ARE INENITABLE SR
IN EATE L _,
-
S e / = _
: | -, - ;' I [a - =
= ‘%) = : ' 1] . .F;'l-

' TE . 5 .;.:.-I'l) , a ., -

Short-Circuit Evaluation

 What if we want to express short-circuit
evaluation of [?

- Define the following contexts, redexes and
local reduction rules

H:=...|HODb,

r::=... | trueldb | falseOb
<true b, o> - <b, 0>
<false b, o> - <false, o>

- the local reduction kicks in before b, is
evaluated

Contextual Semantics Summary

e Can view ¢ as representing the program counter

e The advancement rules for e are non-trivial

- At each step the entire command is decomposed

- This makes contextual semantics inefficient to
implement directly

e The major advantage of contextual semantics: it
allows a mix of local and global reduction rules
- For IMP we have only local reduction rules: only the
redex is reduced
- Sometimes it is useful to work on the context too

- We’ll do that when we study memory allocation, etc.

“Sleep On It”

“The Semantics Pillow”

'-;_“"--.-_____,____‘

'-"-—----..-'

gl Eﬂ*ﬂ—ief.‘,
o —

-
’," i e € + e
, 2. € — -E': Only
i

Mg + e —
.. i te $19,95
R e

? Mo

I-i——-_—____

f

“Learn while you sleep!”

Weil Hu Memorial Lecture

o | will give a completely optional bonus survey
lecture: “A Recent History of PL in Context”
- It will discuss what has been hot in various PL subareas
in the last 20 years

- This may help you get ideas for your class project or
locate things that will help your real research

- Put a tally mark on the sheet if you’d like to attend that
day - I’ll pick a most popular day

o Likely Topics:
- Bug-Finding, Software Model Checking, Automated
Deduction, Proof-Carrying Code, PL/Security, Alias
Analysis, Constraint-Based Analysis, Run-Time Code

Generation

Cunning Plan for
Proof Techniques

 Why Bother?
e Mathematical Induction
e Well-Founded Induction

e Structural Induction

- “Induction On The Structure Of
The Derivation”

Why Bother?

e | am loathe to teach you anything that |
think is a waste of your time.

e Thus | must convince you that inductive
opsem proof techniques are useful.

- Recall class goals: understand PL research
techniques and apply them to your research
e This motivation should also highlight
where you might use such techniques in
your own research.

nderestimate

A New Hope

Classic Example (Schema)

“A well-typed program cannot go wrong.”
- Robin Milner

When you design a new type system, you must show
that it is safe (= that the type system is sound with
respect to the operational semantics).

A Syntactic Approach to Type Soundness. Andrew K.
Wright, Matthias Felleisen, 1992.

- Type preservation: “if you have a well-typed program
and apply an opsem rule, the result is well-typed.”

- Progress: “a well-typed program will never get stuck in a
state with no applicable opsem rules”

Done for real languages: SML/NJ, SPARK ADA, Java

- PL/I, plus basically every toy PL research language ever.

- Classic Examples
CCured Project (Berkeley)

- A program that is instrumented with CCured run-time checks (=
“adheres to the CCured type system”) will not segfault (= “the x86
opsem rules will never get stuck”).

Vault Language (Microsoft Research)

- A well-typed Vault program does not leak any tracked resources and
invokes tracked APIs correctly (e.g., handles IRQL correctly in
asynchronous Windows device drivers, cf. Capability Calculus)

RC - Reference-Counted Regions For C (Intel Research)

- A well-typed RC program gains the speed and convenience of region-
based memory management but need never worry about freeing a
region too early (run-time checks).

Typed Assembly Language (Cornell)

- Reasonable C programs (e.g., device drivers) can be translated to
TALx86. Well-typed TALx86 programs are type- and memory-safe.

Secure Information Flow (Many, e.g,. Volpano et al. ‘96)

- Lattice model of secure flow analysis is phrased as a type system, so
type soundness = noninterference.

Recent Examples

“The proof proceeds by rule induction over the
target term producing translation rules.”

- Chakravarty et al. ’05
“Type preservation can be proved by standard

induction on the derivation of the evaluation
relation.”

- Hosoya et al. ’05
“Proof: By induction on the derivation of N | W.”
- Sumi and Pierce '05

Method: chose four POPL 2005 papers at random,
the three above mentioned structural induction.

(emphasis mine)

Induction

* Most important technique for studying the
formal semantics of prog languages

- If you want to perform or understand PL
research, you must grok this!

 Mathematical Induction (simple)
e Well-Founded Induction (general)
e Structural Induction (widely used in PL)

Mathematical Induction
e Goal: prove LIn LI N. P(n)

e Base Case: prove P(0)

e Inductive Step:
- Prove V n>0. P(n) = P(n+1)
- “Pick arbitrary n, assume P(n), prove P(n+1)”

 [sabelle, why does induction work?

Why Does It Work?

* There are no infinite descending chains of
natural numbers

e For any n, P(n) can be obtained by starting
from the base case and applying n

instances of the inductive step

CMON, CALIN. WE'RE NG, JUST \ENNE
GOING TO THE STORE. HIM HERE .

IF YOU CAN'T WIN
BY REASON, GO
FOR NOWUME.

I =

V11

|

Well-Founded Induction

e Arelation < 0 A x A is well-founded if there are
no infinite descending chains in A

- Example: <, ={ (x, x+1) | x O N}
e aka the predecessor relation
- Example: < ={ (X, y) | X, yON and x <y}
e Well-founded induction:
- To prove [x [A. P(x) it is enough to prove
(x OA. [Oy < x 0O P(y)] O P(x)
o If < is <, then we obtain mathematical induction
as a special case

Structural Induction

e Recalle::=n|e +e,|e "e, | X

e Define < [0 Aexp x Aexp such that
e, e +e e,=<e +e

* *
e, <e e e,<e *e,

- no other elements of Aexp x Aexp are related by =
e To prove Lle [1 Aexp. P(e)

n [Z. P(n)
x L. P(x)
e,, €, L1 Aexp. P(e,) UP(e,) LI P(e, +e,)
e,, €, L1 Aexp. P(e,) UP(e,) L P(e, * e,)

Notes on Structural Induction

e Called structural induction because the
proof is guided by the structure of the
expression

e One proof case per form of expression

- Atomic expressions (with no subexpressions)
are all base cases

- Composite expressions are the inductive case

e This is the most useful form of induction
in PL study

Example of Induction on

Structure of Expressions

e Let

- L(e) be the # of literals and variable occurrences in e
- O(e) be the # of operators in e

e Prove that (e [Aexp. L(e) = O(e) + 1

e Proof: by induction on the structure of e

- Casee=n.L(e)=1and O(e) =0

- Casee=x.L(e)=1and O(e) =0

- Casee=¢, +e,.
« L(e) =L(&) +L(e;) and O(e) = O(gy) + O(e,) + 1
« By induction hypothesis L(e,) = O(e,) + 1 and L(e,) = O(e,) + 1
e Thus L(e) = O(e,) + O(e,) +2=0(e) + 1

- Case e = e, * e,. Same as the case for +

Other Proofs by Structural

Induction on Expressions

e Most proofs for Aexp sublanguage of IMP

« Small-step and natural semantics obtain
equivalent results:

JdeOExp.OnON.e - n <« elln

e Structural induction on expressions works
here because all of the semantics are
syntax directed

Stating The Obvious
(With a Sense of Discovery)

e YOU are given a concrete state o.
e You have -<x+1,0>05
e You also have I+ <x + 1, o> [188
e |s this possible? '

Why That Is Not Possible

e Prove that IMP is deterministic
Je OAexp. DoOZ.0On,n” ON. <e,0>0n O <e,o>0n" 0O n=n’
(b OBexp. Do O Z. 0Ot, " UB. <b,o>0t O <b,o>0t O t=t
Oc O Comm. Uo,0’,0’ 02. <¢c, 0> 00’ U <c,o0>00”7 O o =0"
 No immediate way to use mathematical induction

e For commands we cannot use induction on the
structure of the command

— while’s evaluation does not depend only on the evaluation
of its strict subexpressions

<b, 0> Otrue <c,o>0d <whilebdoc, o> 00"

<while b do ¢, o> O 0"

Recall Opsem

e Operational semantics
assigns meanings to
programs by listing rules of PhiipRDick
inference that allow you to " For You Whetessle.
prove judgments by making
derivations.

e A derivation is a tree-
structured object made up
of valid instances of
inference rules.

We Need Something New

* Some more powerful form of induction ...
o With all the bells and whistles!

P 4 . -
NEW FROM ! CONDITIONING SHAMPOO | INOW SPECIALLY FORMULATED
- _._FH..: _-L.?REA - | FOR BEAUTIFUL VIBRANT ||WITH OUR PATENTED GLY- L O R E ,& L
y HAIR WiTH Efrﬁd Beey.. || CERQ- Emrmmaf

1| FOR A HEAL TH,.'ER
SHEEN

Induction on the
Structure of Derivations

o Key idea: The hypothesis does not just assume a c [
Comm but the existence of a derivation of <c, o> [¢’

e Derivation trees are also defined inductively, just like
expression trees

e A derivation is built of subderivations:
<x+1,0,206-i

<x,0,>05-i 5-i<h «<x:=x+1, 0,> 0o, <W, 0> o

<x<DH,0,>Otrue «x:=x+1; W, 0,,> 0o,

<while x<5dox:=x+1,0,>00,

o Adapt the structural induction principle to work on the
structure of derivations

Induction on Derivations

To prove that for all derivations D of a
judgment, property P holds

For each derivation rule of the form

H, ... H
C

n

Assume P holds for derivations of H. (i = 1..n)

Prove the the property holds for the derivation
obtained from the derivations of H. using the

given rule

I USED T HATE WRITING | |1 REALITED THAT THE

N ASSIGHMENTS , BUT Mow | | PURPOSE OF WRITING 1S
ew T £t THEM, | T0 INFLATE. 'WEAK. IDEAS.,
N /'F_‘_J || OBSCURE. POOR: REASONING,

N O ta t'| on N | | AND MHIBIT CLARITY.

e Write D :: Judgment ggﬁ

P

to mean “D is the N N’
. . Kl
derivation that ‘
proves Judgment”

WITH A LITTLE PRACTICE, |"TWE DYMAMICS OF INTERBEING

WRITING CAN BE AN AND MONOLOGICAL IMPERATIVES
. INTIMIDATING AND M DICK AND JANE A STUDY
» Example: IMPEMETRABLE FOG! I PSTCHIC TRANSRELATIOHAL
WANT TO SEE WY BOOK

REFORT 7

D::<x+1, o> 02

Induction on Derivations (2)

Prove that evaluation of commands is deterministic:
<c,o>Uo’0 Oo”’02Z.<c,o>00”’0 o0’=0”

Pick arbitrary ¢, o, 0’ and D :: <¢c, o> 0O’

To prove: Llo’’ 2. <c, o> o’ I o’ =0’

- Proof: by induction on the structure of the
derivation D
Case: last rule used in D was the one for skip

D ::

<skip, 0> 0o

This means that c = skip, and ¢’ = o

By inversion <c, o> [Jo’’ uses the rule for skip
- Thus o’’’ =0

This is a base case in the induction

Induction on Derivations (3)

Case: the last rule used in D was the one for
sequencing

D,:ii<c,, 0000, D,:<c,,0p00

D ::

<C; C,, 0> 00

Pick arbitrary ¢’’ such that D”’ :: <c,; ¢,, o> U0"’.

- by inversion D’’ uses the rule for sequencing

- and has subderivations D’’, :: <c,, o> [J¢’’, and
D, it <c,, 077> 00"

By induction hypothesis on D, (with D’,): o, =a’’,
- Now D", :: <c,, 0,> 00"’

By induction hypothesis on D, (with D’’,): 0’ = 0o
This is a simple inductive case

)

Induction on Derivations (4)

Case: the last rule used in D was while true

> D,:i<b,o>0Otrue D,:<,0>00, D;:<whilebdoc,opOc

<while b do ¢, o> O’

Pick arbitrary o’’ such that D’’::<while b do ¢, o> [J
G’
- by inversion and determinism of boolean expressions, D’’
also uses the rule for while true
- and has subderivations D’’, :: <c, o> [J0’’, and
D, :: <W, 0’ > 0dc”’
By induction hypothesis on D, (with D’’,): o, = a’’,

- Now D’’; :: <whilebdoc, o> Oc”’

)

By induction hypothesis on D, (with D’’;): 0’ = 0o

What Do You,
The Viewers At Home, Think?

e Llet’sdo 1T true together!
e Case: the last ruleinDwas 1T true

> D, i1 <b, 0> Otrue D, :i<cl, 0> Do,

<if bdo clelsec2, o> 0o,

* Try to do this on a piece of paper. In a few
minutes I’ll have some lucky winners come
on down.

Induction on Derivations (5)

e Case: thelast ruleinDwas 1T true

D, :: <b, 0> O true D, :i<cl, o> 00’

<if bdoclelsec2, o> 00’

e Pick arbitrary ¢" such that
D" :: <if bdo c1 else c2, o> Oa"
- By inversion and determinism, D" also uses 1f true
- And has subderivations D’’, :: <b, o> O true and D’
2 <c1, 0> 00"

By induction hypothesis on D, (with D",): ¢’ = ¢”’

Induction on Derivations
Summary

e If you must prove [x [A. P(x) O Q(x)
- with A inductively defined and P(x) rule-defined
- we pick arbitrary x J A and D :: P(x)

- we could do induction on both facts
e X [JA leads to induction on the structure of x
e D:: P(x) leads to induction on the structure of D

- Generally, the induction on the structure of the
derivation is more powerful and a safer bet

 Sometimes there are many choices for induction
- choosing the right one is a trial-and-error process
- a bit of practice can help a lot

Equivalence

e Two expressions (commands) are equivalent if
they yield the same result from all states

e, = e, iff
o U 2. Un U N.
<e,, 0> [Iniff <e,, a> [n

and for commands
c, = ¢, iff
Ho, o’ U 2.
<c,, 0> o’ iff <¢,, o> 00’

Notes on Equivalence

Equivalence is like logical validity
- It must hold in all states (= all valuations)
- 2=1+1islike “2 =1+ 1 is valid”
- 2 =1+ x might or might not hold.
e S0, 2 is not equivalent to 1 + x

Equivalence (for IMP) is undecidable

- If it were decidable we could solve the halting problem
for IMP. How?

Equivalence justifies code transformations
- compiler optimizations

- code instrumentation

- abstract modeling

Semantics is the basis for proving equivalence

Equivalence Examples
e skip; c=cC
e whilebdoc=
if b then c; while b do c else skip
e Ife,=e,thenx:=e, =x:=¢,
e while true do skip = while true do x := x + 1
e If Cis
while x 2y do
ifx=>ythenx:=x-yelsey:=y-Xx

then (X
=221,y :=527;c)=(x:=17;y :=17)

Potential Equivalence
e(X:=e;X:=€,)=X:=¢,

e |s this a valid equivalence?

I\\. Fﬁ

X A % % (((‘ff “‘@
|

Not An Equivalence

e (X:=e;X:=g)»X:=¢g,
e lie. Chigau yo. Dame desul!
« Not a valid equivalence for all e, e,.

e Consider:
- (X := X+1; X 1= X+2) v X = X+2
« But for n,, n, it’s fine:

- (X:=n; X:=n)=Xx:=n,

Proving An Equivalence

* Prove that “skip; ¢ = c” for all c
e Assume that D :: <skip; ¢, o> 00’
e By inversion (twice) we have that

<skip, 0>0ac D,:<,o>00

<skip; c,0> 00

e Thus, we have D, :: <c,0>
e The other direction is simi

10’

ar

Proving An Inequivalence

* Prove that x :=y w X :=zwheny |=%

o |t suffices to exhibit a g in which the two
commands yield different results

e Let o(y) =0and o(z) = 1
 Then
<X :=Yy, 0> Ho[x :=0]
<X :=z, 0> Ho[x :=1]

Summary of
Operational Semantics

Precise specification of dynamic semantics
- order of evaluation (or that it doesn’t matter)

- error conditions (sometimes implicitly, by rule
applicability; “no applicable rule” = “get stuck”)

Simple and abstract (vs. implementations)

- no low-level details such as stack and memory
management, data layout, etc.

Often not compositional (see while)

Basis for many proofs about a language
- Especially when combined with type systems!

Basis for much reasoning about programs
Point of reference for other semantics

Homework

e Homework 1 Due Today

e Homework 2 Due Tuesday
- No more homework overlaps.

* Read Winskel Chapter 5
- Pay careful attention.

e Read Winskel Chapter 8

- Summarize.

