THEMS FIGUTIN' WORDS,
MISTER. UNLRGS'H, O COURSE,
THEMS JUST SEMANTICS,

‘ou| ‘ajenpuds siopeen) 002 & ubulidon

Today’s Cunning Plan

e Review, Truth, and Provability
e Large-Step Opsem Commentary

e Small-Step Contextual Semantics
- Reductions, Redexes, and Contexts

e Applications and Recent Research

Summary - Semantics

e A formal semantics is a system for
assigning meanings to programs.

* For now, programs are IMP commands and
expressions

 In operational semantics the meaning of a
program is “what it evaluates to”

e Any opsem system gives rules of inference
that tell you how to evaluate programs

Summary - Judgments

e Rules of inference allow you to derive judgments
(“something that is knowable”) like
<e, o> Un
- In state o, expression e evaluates to n
<c, o> o’

- After evaluating command c in state o the new state
will be o’

e State o maps variables to values (o : L — Z)

* Inferences equivalent up to variable renaming:
<c,o>00’ === <c’,0,>00,

Notation: Rules of Inference

 We express the evaluation rules as rules of
inference for our judgment

- called the derivation rules for the judgment

- also called the evaluation rules (for
operational semantics)

e In general, we have one rule for each
language construct:

<€, 0~ N N, <&, 0> N n2'\This is the only
<e, +e,, 0> B n, + n, rule for e, + e,

Rules of Inference
Hypothesis, ... Hypothesis,

Conclusion

[Fb:bool TTkFetl:1T TkFe2:T1

[~ifbthenelelsee?: T

e For any given proof system, a finite
number of rules of inference (or schema)
are listed somewhere

e Rule instances should be easily checked
e What is the definition of “NP”?

Derivation

['(z) = int "
. . var in
['(x) = int . [(x) = int ['Fa:nt ['F1:mt
var int — var , sub
['For:int ['F3:nt ['Fz:int ['Fae—-1:int |
gt assign
['Fa>3:bool [Fri=10-1

while

['Fwhilex >3 doxz:=x—1 done

e Tree-structured (conclusion at bottom)

e May include multiple sorts of rules-of-
inference

e Could be constructed, typically are not
 Typically verified in polynomial time

Evaluation Rules (for Aexp)

<n, 0> n <x, 0> [0 a(x)

<e,,0>[1n, <e,,o>l0n, <e,o>lln, <e, 0>[ln,

<e; +e,, 0> O n, plus n, <g, - e,, 0> [n, minus n,

<e,,0>[n, <e,, 0>0lln,
<e, * e,, 0> 0 n, times n,

e This is called structural operational semantics
- rules defined based on the structure of the expression

e These rules do not impose an order of evaluation!

Evaluation Rules (for Bexp)

<e,, 0> ln, <e,, 0>Lln,

<true, o> Utrue <e;<e,,0>Un, < n,

<e,,0>[ln, <e,, 0>[ln,

<false, o> Ofalse <e,=e,, 0> 0n, = n,
<b,, o> O false <b,, 0> O false
<b, Ob,, o> Ofalse <b, Ob,, o> Ofalse

<b,, 0> Otrue <b,, 0> [true
y<b; Ub,, 0> Utrue

(show: candidate V rule

How to Read the Rules?

e Forward (top-down) = inference
rules

- if we know that the hypothesis
judgments hold then we can infer that
the conclusion judgment also holds

- If we know that <e,, o> [15 and
<e,, 0> [17, then we can infer that
<e, +e,, 0> 112

How to Read the Rules?

e Backward (bottom-up) = evaluation rules

- Suppose we want to evaluate e, + e,, i.e., find

ns.t. e, + e, [Inis derivable using the
previous rules

- By inspection of the rules we notice that the
last step in the derivation of e, + e, [1n must

be the addition rule

e the other rules have conclusions that would not
match e, + e, [In

e this is called reasoning by inversion on the
derivation rules

Evaluation By Inversion

« Thus we must find n, and n, such that
e, [Un, and e, [1n, are derivable
- This is done recursively

o If there is exactly one rule for each kind of
expression we say that the rules are syntax-

directec
- At each step at most one rule applies

- This allows a simple evaluation procedure as
above (recursive tree-walk)

- True for our Aexp but not Bexp. Why?

Evaluation of Commands

e The evaluation of a Com may have side
effects but has no direct result

- What is the result of evaluating a command ?
e The “result” of a Com is a new state:

<c, 0> o

)

- But the evaluation of Com might not
terminate! Danger Will Robinson! (huh?)

Com Evaluation Rules 1

<¢,,o0>do <, 0>00"

<skip, 0> o <C,. C,,0> 00"

<b, 0> Otrue <c,o0>00

<if b thenc, else c,, 0> 00

<b, 0> Ofalse <«c,, o> 00

<if b thenc, else c,, 0> ¢

Com Evaluation Rules 2

<e, 0> [n Def: o[x:=n](x) =n

<x :=e, 0> 0o[x :=n] o[x:= n](y) = a(y)

e Let’s do while together

Com Evaluation Rules 3

<e, 0> [n Def: o[x:=n](x) =n

<x := e, 0> 0o[x :=n] o[x:= n](y) = a(y)

<b, o> [false

<while bdo c, o> o

<b, o> Otrue <c; whilebdoc, o> 0o’
<while bdoc, o> 00’

Summary - Rules

o Rules of inference list the hypotheses
necessary to arrive at a conclusion

<e,, 0> In, <e,, 0>Lln,

<x, 0> 0 o(x) <e, - e,, 0> [0n, minus n,
e A derivation involves interlocking (well-
formed) instances of rules of inference
<4,0p 04 <2,0p 02

<4*2, 0> 08 <6, 0> 06
<«(4*2) - 6,0 02

Operational Semantics

Semantics

ol

Sherlock saw the man using binoculars,

Sherlock saw the man using binoculars.

Provability

e Given an opsem system, <e, o> [In is
provable if there exists a well-formed
derivation with <e, o> [1n as its conclusion

- “well-formed” = “every step in the derivation is a
valid instance of one of the rules of inference for
this opsem system”

- “F <e, o> OOn” = “it is provable that <e, o> On”

 We would like truth and provability to be
closely related

Truth?

e “A Vorlon said understanding is a three-
edged sword. Your side, their side and
the truth.”

- Sheridan, Into The Fire
e We will not formally define “truth” yet

e Instead we appeal to your intuition
- <242, 0> U4 -- should be true
- <242, 0> J5 -- should be false

Completeness

o A proof system (like our operational
semantics) is complete if every true
judgment is provable.

 If we replaced the subtract rule with:

<e,, 0> n <e,, 0> 10

GODELS THEOREM

<€1 B ez, o> |:| n AN INCOMPLETE GUIDI

TO TS USE AND ABUSE

e Our opsem would be incomplete:
<4-2, 0> 02 -- true but not provable

Consistency

o A proof system is consistent (or sound) if
every provable judgment is true.

 If we replaced the subtract rule with:

<e,, 0> LIn, <e,, 0> LIn,

<€1 - 62,0> Dn1+3

e Our opsem would be inconsistent (or
unsound):

- <6-1, 0> 09 -- false but provable

“A foolish consistency is the hobgoblin of little minds,
adored by little statesmen and philosophers and divines.”
-- Ralph Waldo Emerson, Essays. First Series. Self-Reliance.

Desired Traits

» Typically a system (of operational semantics) is
always complete (unless you forget a rule)

f you are not careful, however, your system may
e unsound

e Usually that is very bad

- A paper with an unsound type system is usually rejected
- Papers often prove (sketch) that a system is sound

- Recent research (e.g., Engler, ESP) into useful but
unsound systems exists, however

* |n this class your work should be complete and
consistent (e.g., on homework problems)

Dr. Peter Venkman: I'm a little fuzzy on the whole "good/bad" thing here.
What do you mean, "bad™?

Dr. Egon Spengler: Try to imagine all life as you know it stopping instantaneously
and every molecule in your body exploding at the speed of light.

With That In Mind

 We now return to opsem for IMP

<e, 0> n

<X :=e, 0> Uo[x :=n]

<b, o> [false

Def: ao[x:=n](x)
o[x:= n](y)

<while bdo c, o> o

<b, o> true <c; whilebdoc, o>00c’

<while bdoc, o> 0o’

Command Evaluation Notes

 The order of evaluation is important
- ¢, is evaluated before ¢, in C,; C,

- ¢, is not evaluated in “if true then c, else ¢,”

- ¢ is not evaluated in “while false do c”
- b is evaluated first in “if b then c, else ¢,”

- this is explicit in the evaluation rules

« Conditional constructs (e.g., b, V b,) have

multiple evaluation rules
- but only one can be applied at one time

Command Evaluation Trials

* The evaluation rules are not syntax-
directed

- See the rules for while, A
- The evaluation might not terminate

e Recall: the evaluation rules suggest an
interpreter

e Natural-style semantics has two big
disadvantages (continued ...)

Disadvantages of Natural-Style

Operational Semantics

e It is hard to talk about commands whose
evaluation does not terminate
- i.e., when there is no 0’ such that <c, o> 0o’
- But that is true also of ill-formed or erroneous
commands (in a richer language)!
e |t does not give us a way to talk about
intermediate states
- Thus we cannot say that on a parallel machine

the execution of two commands is interleaved
(= no modeling threads)

Semantics Solution

* Small-step semantics addresses these N
problems

- Execution is modeled as a (possible infinite)
sequence of states

* Not quite as easy as large-step natural
semantics, though

o Contextual semantics is a small-step
semantics where the atomic execution
step is a rewrite of the program

Contextual Semantics

 We will define a relation <c, o> - <c’, o’>
- ¢’ is obtained from c via an atomic rewrite step

- Evaluation terminates when the program has
been rewritten to a terminal program

» one from which we cannot make further progress
- For IMP the terminal command is “skip”

- As long as the command is not “skip” we can
make further progress

e some commands never reduce to skip (e.g., “while
true do skip”)

Contextual Derivations

* In small-step contextual semantics,
derivations are not tree-structured

e A contextual semantics derivation is a
sequence (or list) of atomic rewrites:

<x+(7-3),0> — <x+(4),0> —T> <5+4,0> — <9,0>

o(x)=5

What is an Atomic Reduction?

 What is an atomic reduction step?
- Granularity is a choice of the semantics designer

 How to select the next reduction step, when
several are possible?

- This is the order of evaluation issue

[0 Yo BELIEVE LR NGO, T THINK We CAMN
DESTINIES ARE COMTROLLED(| DO WHATEVER WE wWANT
WITH OUR LINES.

Redexes

e A redex is a syntactic expression or command that
can be reduced (transformed) in one atomic step

 Redexes are defined via a grammar:
r.i=xX (x € L)

I"]1 + n2

X:=Nn

skip; C

if true then c, else ¢,

if false then c, else c,

while b do ¢
e For brevity, we mix exp and command redexes
 Note that (1 + 3) + 2 is not a redex, but 1 + 3 is

Local Reduction Rules for IMP

e One for each redex: <r, 0> - <e, 0’>

- means that in state o, the redex r can be replaced in
one step with the expression e

<X, 0> - <0(Xx), o>
<n, +n,, 0> - <n, 0> where n = n, plus n,
<n, = n,, 0> - <true, o> if n, = n,
<X :=n, 0> - <skip, o[x :=n]>
<skip; ¢, 0> - <c, 0>
<if true then c, else ¢,, 0> - <c,, 0>
<if false then c, else ¢,, 0> - <c,, 0>
<whilebdoc, o> -

<if b then c; while b do c else skip, o>

Not happy? I’ll explain with pictures soon!

The Global Reduction Rule

e General idea of contextual semantics

- Decompose the current expression into the
redex-to-reduce-next and the remaining
program

e The remaining program is called a context

- Reduce the redex “r” to some other
expression “e”

- The resulting (reduced) expression consists
of “e” with the original context

As A Picture (1)

(Context)

X 1= 2+2

Step 1: Find The Redex

As A Picture (2)

(Context)

X := 2+2 (redex)

Step 1: Find The Redex
Step 2: Reduce The Redex

As A Picture (3)

(Context)

X := | 2+2 (redex) \

— 4 (reduced)

Step 1: Find The Redex
Step 2: Reduce The Redex

As A Picture (4)

(Context)

Step 1: Find The Redex
Step 2: Reduce The Redex
Step 3: Replace It In The Context

Contextual Analysis

 We use H to range over contexts

 We write HJ[r] for the expression obtained
by placing redex r in context H

 Now we can define a small step

If <r, 0> - <e, 0’>
then <H[r], o> - <Hl[e], o’>

Contexts

o A context is like an expression (or
command) with a marker ¢ in the place
where the redex goes

e Examples:

- To evaluate “(1 + 3) + 2” we use the redex
1 + 3 and the context “e + 2”

- To evaluate “if x > 2 then c, else ¢,” we use
the redex x and the context “if « > 2 then c,
else ¢,”

Context Terminology

o A context is also called an “expression
with a hole”

e The marker ¢ is sometimes called a hole

e H[r] is the expression obtained from H by
replacing ¢ with the redex r

“Avoid context and specifics; generalize
and keep repeating the generalization.”
-- Jack Schwartz

Contextual Semantics Example

e x:=1;x:=x+1with initial state [x:=0]

<Comm, State> Redex Context

<X :=1; x:=x+1, [x:=0]> |x :=1 o X i= X+1

<skip; x :=x+1, [x :=1]> |skip; X := X+1 |e

<X :=x+1, [x :=1]> X X:=e +1

What happens next?

Contextual Semantics Example

e x:=1;x:=x+1with initial state [x:=0]

<Comm, State> Redex Context

<X :=1; x:=x+1, [x:=0]> |x :=1 o X i= X+1

<skip; x :=x+1, [x :=1]> |skip; X := X+1 |e

<X :=x+1, [x :=1]> X X =9+ 1
<x:=1+1,[x:=1]> 1+ 1 X 1=
<X :=2, [x:=1]> X =2 .

<skip, [x := 2]>

More On Contexts

» Contexts are defined by a grammar:
H::=¢ | n+H

H+e

X :=H

if H then c, else ¢,

H; C

o A context has exactly one « marker

* A redex is never a value

What’s In A Context?

o Contexts specify precisely how to find the
next redex

- Consider e, + e, and its decomposition as HJr]
- Ife,isn,ande,isn,thenH=+andr=n, +n,

- If e, isn,and e, isnot n, thenH=n, + H,and e, =
H,[r]
- If e, isnot n, then H=H, + e, and e, = H,[r]

- In the last two cases the decomposition is done
recursively

- Check that in each case the solution is unique

Unique Next Redex:
Proof By Handwaving Examples

e €.8.C=“C; C,” - either
- ¢, = skip and then c = H[skip; c,] with H =«
- or ¢, # skip and then ¢, = H[r]; so c = H’[r] with
H’ =H; ¢,
e €.g. c = “if b then c, else ¢,”

- either b = true or b = false and then c = H[r] with
H=oe

- or b is not a value and b = HJ[r]; so c = H’[r] with
H’ = if H then ¢, else ¢,

Context Decomposition

e Decomposition theorem:

If c is not “skip” then there exist unique
H and r such that c is H[r]

- “Exist” means progress
- “Unique” means determinism

DO YO BELIEYE Yoiy MEAN, THET CUR YEAH . THET THE THINGS | [/ WHaT &
? [NES BRY PREDESINED 7} | WE DO ARE INENITABLE SR
IN EATE L _,
-
S e / = _
: | -, - ;' I [a - =
= ‘%) = : ' 1] . .F;'l-

' TE . 5 .;.:.-I'l) , a ., -

Short-Circuit Evaluation

 What if we want to express short-circuit

evaluation of
- Define the fo

!

lowing contexts, redexes and

local reduction rules
H:=...|HODb,

M o.=

... | true b | false b

<true b, o> - <b, 0>
<false OO b, o> - <false, o>
- the local reduction kicks in before b, is

evaluated

Contextual Semantics Summary

e Can view ¢ as representing the program counter

 The advancement rules for e are non-trivial
- At each step the entire command is decomposed

- This makes contextual semantics inefficient to
implement directly

 The major advantage of contextual semantics: it
allows a mix of local and global reduction rules
- For IMP we have only local reduction rules: only the
redex is reduced
- Sometimes it is useful to work on the context too

- We’ll do that when we study memory allocation, etc.

Reading Real-World Examples

e Cobbe and Felleisen, POPL 2005
 Small-step contextual opsem for Java
* Their rule for object field access:

P & (Elobj.fd], Sy — (E[F (fd)], S)
where F = fields(S(0bj)) and fd € dom(F)

P I <E[obj.fd],S> — <E[F(fd)],S>
- where F=fields(5(obj)) and fd € dom(F)

 They use “E” for context, we use “H”

€€)

e They use “S” for state, we use “o

Lost In Translation

P <H[obj.fd],o> — <H[F(fd)],o>
- Where F=fields(o(obj)) and fd € dom(F)

 They have “P 7, but that just means “it
can be proved in our system given P”

e <H[obj.fd],o> — <H[F(fd)],o>
- Where F=fields(o(obj)) and fd € dom(F)

Lost In Translation 2

e <H[obj.fd],o> — <H[F(fd)],o>
- Where F=fields(o(obj)) and fd € dom(F)

 They model objects (like obj), but we do
not (yet) - let’s just make fd a variable:

e <H[fd],0> — <H[F(fd)],0>
- Where F=o0 and fd € L
 Which is just our variable-lookup rule:

e <H[fd],0> — <H[o(fd)],o> (when fd € L)

“Sleep On It”

“The Semantics Pillow”

'-;_“"--.-_____,____‘

'-"-—----..-'

gl Eﬂ*ﬂ—ief.‘,
o —

-
’," i e € + e
, 2. € — -E': Only
i

Mg + e —
.. i te $19,95
R e

? Mo

I-i——-_—____

f

“Learn while you sleep!”

Homework

e Homework 2 Out Today
- Due Next Week

e Read Winskel Chapter 3

e Want an extra opsem review?

- Natural deduction article
- Plotkin Chapter 2

* Optional Philosophy of Science article

