In Our Last Exciting Episode

1 CAN'T WAIT TO WILL WE SEE I'D LIKE TO BEGIN HE'S ALREADY
SEE WHAT'S UP NEW SCEMNARIOST BY SHOWING THIS _ LOST ME. '
WITH THIS NEW NEW DEVICEST? BLOCK DIAGRAM 1/ SEVEN SECONDS,

TECHNOLOGY GROUND-BREAKING | | OF OUR PROPOSED THAT'S A NEW

ANNOUNCEMENT. | | user wTerraces? | | ArcHiTECTURAL RECORD.

—
=
il
—
'
=]
™
=]
L]
=
[}
)
-
]
]
nl
Fu)
L=y
(=]
—
L
=
(=
=]
[

USABILITY TIME. MMMM... NO... | THINKE WE'RE

COLDER... COLDER... WARMER... HOT! LEADING THE
S0 TO USE THE .

WOULD YOU CLICK? "WOULD YOU SAY |
THIS IS THE BEST

pyight 200E Hans Bjordahl

Eug Eash by Hans Ejordahl http: . bugbash. net s

#1

Two SLAM/BLAST handwaves

Q. How to compute “successors” ?

#2

Weakest Preconditions

WP(P,OP)
Weakest formula P’ s.t.
if P’ is true before OP
then P is true after OP

[WP(P, OP)]

#3

Weakest Preconditions

WP(P,OP)
Weakest formula P’ s.t.
if P’ is true before OP
then P is true after OP

Ple/Xx]

Assign
X=e

p

new+1 = old

|

new = old

-

new = new+l

[WP(P, OP)]

#4

How to compute successor ?

Example () {
1: dof
lock() ;
old = new;
g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;

}
4:}while(new != old);
5: unlock ()
}

Predicates: LoCK, new==old

LOCK , new==old | 3 F

O OP

- LOCK , = new = old 4 ?

For each p
. Check if p is true (or false) after OP

Q: When is p true after OP ?

- If WP(p, OP) is true before OP !
- We know F is true before OP_

- Thm. Pvr. Query: F = WP(p, OP)

#5

How to compute successor ?

Example () {
1: dof{
lock () ;
old = new;
g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;

}
4:}while(new != old);
5: unlock ()
}7

Predicates: LoCK, new==old

LOCK , new==old | 3 F

O OP

For each p
. Check if p is true (or false) after OP

Q: When is p false after OP ?

-If WP(- p, OP) is true before OP !
- We know F is true before OP_

- Thm. Pvr. Query: F = WP(- p,
OP)

#6

How to compute successor ?

Example () {
1: dof{
lock() ;
old = new;
g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;

}
4:}while(new != old);
5: unlock ()
}

Predicate: new==old

True ? (LOCK , new=

False 7 (LoCK , new=

LOCK , new==old

O

- LOCK , = new = old

For each p

OP

. Check if p is true (or false) after OP

vr,

=old) = (new + 1 = old)

=old) = (new + 1 Z old)

#7

Advanced SLAM/BLAST

Too Many Predicates

- Use Predicates Locally
Counter-Examples

- Craig Interpolants
Procedures

- Summaries
Concurrency

- Thread-Context Reasoning

#8

SLAM Summary

Instrument Program With Safety Policy
Predicates = { }

Abstract Program With Predicates

- Use Weakest Preconditions and Theorem Prover Calls
Model-Check Resulting Boolean Program
- Use Symbolic Model Checking

Error State Not Reachable?

- Original Program Has No Errors: Done!
Check Counterexample Feasibility

o Use Symbolic Execution

Counterexample Is Feasible?

- Real Bug: Done!

Counterexample Is Not Feasible?

1) Find New Predicates (Refine Abstraction)
2) Goto Line 3

#9

1:
2
3
4
9:
6
7
8

3

Optional: SLAM Weakness

F() 1

:int x=0;
. lock();
: do x++;
while (x # 88);
2 if (x < 77)

lock();

Preds = {}, Path = 234567
[x=0, —-x+1£88, x+1<77]
Preds = {x=0}, Path = 234567
[x=0, —x+1£88, x+1<77]
Preds = {x=0, x+1=88}

Path = 23454567

[X=0, —x+2#88, x+2<77]
Preds = {x=0,x+1=88,x+2=88}
Path = 2345454567

Result: the predicates

“count” the loop iterations
#10

Lessons From Model Checking

e To find bugs, we need specifications
- What are some good specifications?

e To convert a program into a model, we need
predicates/invariants and a theorem prover.

- What are important predicates? Invariants?

- What should we track when reasoning about a
program and what should we abstract?

- How does a theorem prover work?

e Simple algorithms (e.g., depth first search, pushing
facts along a CFG) can work well

- ... under what circumstances? 411

+To reason about a program
(= “is it doing the right
thing? the wrong thing?”)
we must understand what
the program means!

#12

A Simple Imperative Language
Operational Semantics
(= “meaning”™)

TM HUNGRY. L SURE., HELP YOURSELF, YOU CAN HAVE AN APPLE | | EVEN THOUGH WE'RE BOTH
AN T HAVE OR. AN ORANGE FROM THE | | TALKING ENGUISH, WE'RE
NOT SPEAKING THE SAME

LANGUAGE..

) f/ﬁ
£ o 0
)

Homework #1 Out Today

e Due One Week From Now
e Take a look tonight
e My office hours are Fridays at this time

HOCUS-POCUS, I COMMAND MY
@ACADABRA.’] TO DO TSRLED
HOMEWORK, BE DONE!

Medium-Range Plan

e Study a simple imperative language IMP
- Abstract syntax (today)
- Operational semantics (today)
- Denotational semantics
- Axiomatic semantics

- ... and relationships between various
semantics (with proofs, peut-étre)

- Today: operational semantics
 Follow along in Chapter 2 of Winskel

Syntax of IMP

» Concrete syntax: The rules by which programs can be
expressed as strings of characters

- Keywords, identifiers, statement separators vs.
terminators (Niklaus!?), comments, indentation (Guido!?)

o Concrete syntax is important in practice

- For readability (Larry!?), familiarity, parsing speed
(Bjarne!?), effectiveness of error recovery, clarity of error
messages (Robin!?)

o Well-understood principles
- Use finite automata and context-free grammars
- Automatic lexer/parser generators

(Note On Recent Research)

 If-as-and-when you find yourself making a
new language, consider GLR (elkhound)
instead of LALR(1) (bison)

o Scott McPeak, George G. Necula:
Elkhound: A Fast, Practical GLR Parser
Generator. CC 2004: pp. 73-88

e As fast as LALR(1), more natural, hand es
basically all of C++, etc.

Abstract Syntax

 We ignore parsing issues and study
programs given as abstract syntax trees

- | provide the parser in the homework ...

* An abstract syntax tree is (a subset of) the
parse tree of the program
- Ignores issues like comment conventions

- More convenient for formal and algorithmic
manipulation

- All research papers use ASTs, etc.

IMP Abstract Syntactic Entities

¢ int integer constants (n U Z)
 bool bool constants (true, false)
o | locations of variables (X, y)
e Aexp arithmetic expressions (e)
e Bexp boolean expressions (b)

e Com commands (c)

- (these also encode the types)

Abstract Syntax (Aexp)
o Arithmetic expressions (Aexp)
e:l=n fornJZ
X for x UL
e, +e, fore, e,]Aexp
e, -e, fore,e,]Aexp

*

e, "e, fore, e,]Aexp

e Notes:
- Variables are not declared
- All variables have integer type
- No side-effects (in expressions)

Abstract Syntax (Bexp)

* Boolean expressions (Bexp)

b ::= true
false
€ =&
e <e,
=1 D
b, U b,

| b, Ob,

for e, e, I Aexp
for e, e, I Aexp
for b LJ Bexp

for b,, b, L1 Bexp
for b,, b, L1 Bexp

“Boolean” JEC_D;I/E mLUNCH [

e George Boole “—-;—CFW NO, No, Y&

ES, NOI'JOI NOYES,..
- 1815-1864 N

e |’ll assume you
know boolean

algebra ...
P | PAQ
T T
T F F
F T F
F F F

Abstract Syntax (Com)

« Commands (Com)

c ::= skip
X:=e xL O eJAexp
C,;C, c,,c,[1Com
if b then c, elsec, c,,c,[l1Com [0 b[IBexp
while b do ¢ cCom 0O bOBexp
* Notes:

- The typing rules are embedded in the syntax definition

- Other parts are not context-free and need to be checked
separately (e.g., all variables are declared)

- Commands contain all the side-effects in the language
- Missing: pointers, function calls, what else?

Why Study Formal Semantics?

e Language design (denotational)

* Proofs of correctness (axiomatic)

o Language implementation (operational)
e Reasoning about programs

e Providing a clear behavioral specification

o “All the cool people are doing it.”
- You need this to understand PL research

e “First one’s free.”

Consider This Java

x =0; » What happens when
tr)z’_{ .. you execute this
=1 ?
break mygoto; code
} finally { e Notably, what
X = 2; assignments are
raise ?
NullPointerException; executed:
3
X = 3;
mygoto:

X = 4;

14.20.2 Execution of try-catch-finally

A tLy statement with a finally block is executed by first executing the try block. Then there is
a choice:

If execution of the try block completes normally, then the finally block is executed, and then
there is a choice:

- If the finally block completes normally, then the try statement completes normally.

- If the fiSnally block completes abruptly for reason S, then the try statement completes abruptly for
reason S.

If er>]<e.cution of the try block completes abruptly because of a throw of a value V, then there is
a choice:

- If the run-time type of V is assignable to the parameter of any catch clause of the try statement, then
the first (leftmost) such catch clause is selected. The value V is assigned to the parameter of the
selected catch clause, and the Block of that catch clause is executed. Then there is a choice:

» If the catch block completes normally, then the finally block is executed. Then there is a choice:

If the finally block completes normally, then the try statement completes normally.
If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason.

» If the catch block completes abruptly for reason R, then the finally block is executed. Then there is a choice:
If the finally block completes normally, then the try statement completes abruptly for reason R.

Idf the (fjinc?lly block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is
iscarded).

- If the run-time type of V is not assignhable to the parameter of any catch clause of the try statement,
then the finally block is executed. Then there is a choice:

. I& the finally block completes normally, then the try statement completes abruptly because of a throw of the value

» If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and
the throw of value V is discarded and forgotten).

If execution of the try block completes abruptly for any other reason R, then the finally block
is executed. Then there is a choice:
- If the finally block completes normally, then the try statement completes abruptly for reason R.

- If the finally block completes abruptly for reason S, then the try statement completes abruptly for
reason S (and reason R is discarded).

Can’t we just nail
this somehow?

v "g; Bg i tS
wplames @Ef‘* his S
Saimsen-like ,Jpscm Ene

Ouch! Confusing.

 Wouldn’t it be nice if we had some way of
describing what a language (feature or
program) means ...
- More precisely than English
- More compactly than English
- So that you might build a compiler

- So that you might prove things about
programs

Analysis of IMP

e Questions to answer:

- What is the “meaning” of a given IMP

expression/command?

- How would we go about evaluating IMP expressions

and commands?

- How are the evaluator and the meaning related?

Three Canonical Approaches

e Operational
- How would | execute this?
- “Symbolic Execution”

e Axiomatic

- What is true after |
execute this?

 Denotational

- What is this trying to
compute?

LI oy 0
Alej:x ANOER

Tae Book of taree

An Operational Semantics

o Specifies how expressions and commands should be
evaluated

e Depending on the form of the expression

- 0,1, 2,...don’t evaluate any further.
e They are normal forms or values.
- e, + e, is evaluated by first evaluating e, to n, , then
evaluating e, to n,. (post-order traversal)

o The result of the evaluation is the literal representing n, + n,.
- Similarly for e, * e,

» Operational semantics abstracts the execution of a
concrete interpreter

- Important keywords are colored & underlined in this class.

Semantics of IMP

 The meanings of IMP expressions depend on the
values of variables

- What does “x+5” mean? It depends on “x”!

* The value of variables at a given moment is
abstracted as a function from L to Z (a state)

- If x 8 in our state, we expect “x+5” to mean 13
e The set of all statesis2 =L - Z

 We shall use o to range over >
- 0, a state, maps variables to values

Notation: Judgment

e We write:
<e, 0> LUn

e To mean that e evaluates to n in state o.

e This is a judgment. It asserts a relation
between e, o and n.

e |n this case we can view []as a function
with two arguments (e and o).

Operational Semantics

e This formulation is called natural
operational semantics

- or big-step operational semantics

- the] judgment relates the expression and
its “meaning”

e How should we define
<e, +e,, 0> [...7

Notation: Rules of Inference

 We express the evaluation rules as rules of
inference for our judgment

- called the derivation rules for the judgment

- also called the evaluation rules (for
operational semantics)

e In general, we have one rule for each
language construct:

<€, 0> Un, <e, 0>ln, | This is the only

<e, +e,, 0> [] n, + n, rule for e, + e,

Rules of Inference
Hypothesis, ... Hypothesis,

Conclusion

[Fb:bool TTFel:1T TFe2:T

[~if bthenel elsee?2: 1

* For any given proof system, a finite
number of rules of inference (or schema)
are listed somewhere

* Rule instances should be easily checked
 What is the definition of “NP”?

Derivation

['(z) = int "
. . var in
[(z) = int - T(z)=int ['Fa:mt ['F1:nt
var int — var , sub
['Fax:int I'F3:int ['Fa:mt 'Fae-1:imt .
gt assign
['Fa>3: bool [Fr=0-1

while

['Fwhilex >3 doxz:=x—1 done

e Tree-structured (conclusion at bottom)

e May include multiple sorts of rules-of-
inference

* Could be constructed, typically are not
 Typically verified in polynomial time

Evaluation Rules (for Aexp)

<n, 0> 0n <x, 0> [0 o(x)

<e,,0>n, <e,,o>ln, <e,o>n, <e, 0>0n,

<€1+€2,O'>Dn1"'n2 <€1'€2,G>Dn1'n2

<e,,0>n;, <e,, o>0ln,
<e; ¥e,, 0> 0n, *n,

e This is called structural operational semantics
- rules defined based on the structure of the expression

* These rules do not impose an order of evaluation!

Evaluation Rules (for Bexp)

<e,, 0> LUn;, <e,, 0> Lln,

<true, o> Ltrue <e;<e,, 0> 0Un, < n,

<e,, 0> LUn, <e,, 0> Lln,

<false, o> Ofalse <e,=e,, 0>0n, = n,
<b,, 0> O false <b,, 0> O false
<b, Ob,, o> Ofalse <b, Ob,, o> Ofalse

<b,, 0> Otrue <b,, o> [true
<b, Ob,, 0> Otrue

(show: candidate V rule)

How to Read the Rules?

* Forward (top-down) = inference
rules

- if we know that the hypothesis
judgments hold then we can infer that
the conclusion judgment also holds

- If we know that <e,, o> [15 and
<e,, 0> [17, then we can infer that
<e, +e,, 0> 112

How to Read the Rules?

e Backward (bottom-up) = evaluation rules

- Suppose we want to evaluate e, + e,, i.e., find
ns.t. e, + e, [Inis derivable using the
previous rules

- By inspection of the rules we notice that the
last step in the derivation of e, + e, [I1n must

be the addition rule

e the other rules have conclusions that would not
match e, + e, [Jn

e this is called reasoning by inversion on the
derivation rules

Evaluation By Inversion

« Thus we must find n, and n, such that e,
[In, and e, [1n, are derivable

- This is done recursively

o If there is exactly one rule for each kind of
expression we say that the rules are syntax-
directed
- At each step at most one rule applies

- This allows a simple evaluation procedure as
above (recursive tree-walk)

- True for our Aexp but not Bexp. Why?

Evaluation of Commands

* The evaluation of a Com may have side
effects but has no direct result

- What is the result of evaluating a command ?
 The “result” of a Com is a new state:

<c, 0> o

)

- But the evaluation of Com might not
terminate! Danger Will Robinson! (huh?)

Com Evaluation Rules 1

<¢,,0> o <, 0>00"

<skip, 0> o <C,. C,,0> 00"

<b, 0> Otrue <c,,0>00

<if b thenc,else c,, o> 00

<b, 0> Ofalse <c,,0> 00

<if b thenc,elsec,, o> 00

Com Evaluation Rules 2

<e, 0> n

<X :=e, 0> LJg[Xx :=n]

Def: ao[x:=n](x)
o[x:= n](y)

e Let’s do while together

Com Evaluation Rules 3

<e, 0> n

<X :=e, 0> Uo[x :=n]

<b, o> [false

Def: ao[x:=n](x)
o[x:= n](y)

<while bdo c, o> o

<b, o> Otrue <c; whilebdoc, o> 0o’

<whilebdoc, o> 0o’

Homework

« Homework 1 Out Today
- Due In One Week

e Read at least 1 of these 3 Articles

- 1. Wegner's Programming Languages - The First 25
years

- 2. Wirth's On the Design of Programming Languages
- 3. Nauer's Report on the algorithmic language
ALGOL 60

« Skim the optional reading - we’ll discuss opsem
“in the wild” next time

