CS164 - LR Parsing Table Example (Weimer)

Consider the grammar:

A —- A+B
A — a
B — b

Some strings in this grammar are: a, a+b, a+b+b, etc. This grammar is left-recursive. Let’s build the LR parsing
table through closures and state diagrams. First we add the extra production:

S — A

Just to make it clear where things start. Now it’s time to start building the DFA, state by state. The first state
is related to the production S — A. We’ll discover how many states there are later. Recall that an LR(1) item looks
like this: [A — a e §,t] where A — af3 is a production in the grammar, ¢ is a terminal (called the lookahead) and the
dot conceptually marks where we are (we have already seen «, we’re looking for 3).

State 0:

We start with: [S — eA,$]. Now we have to take the closure. To do that, we look to see if there is a e before
a non-terminal. In fact, there is a e before an A. So we look at all of the productions in the grammar that start
with A — and we bring them in to the closure. That adds [A — eA + B, §] and [A — eqa,$]. Are we done yet? Not
necessarily: we brought in another item that has a e before a non-terminal. So we need to take the closure again. This
time, since the production near the dot looks like e A+ we’ll use + as the lookahead. So once again we bring in another
item for all of the productions that start with A —. That add [A — eA + B, +] and [A — ea, +]. We’ve brought in
another item with a e before a non-terminal, but taking the closure again would not yield any new items (try it!).

Final tally: [S — eA,$], [A - eA+ B,§], [A — eqa,$], [A - eA+ B, +], [A = ea, +].

Now we want to find transitions out of this state. There is a transition out of this state for every symbol X after
a e in one of the items. Looking at our five items, we find a e before an a and an A. So there are two transitions out
of State 0. Let’s say that on A we transition to State 1 and that on a we transition to State 2. You may find it
helpful to draw out a diagram on a piece of scratch paper. [Note that I could have said that A goes to State 2 and a
goes to State 1 and the DFA would have been the same up to relabeling. |

State 1:

We need to figure out which items appear in State 1. We go here by coming from State 0 and transitioning on
A. So we look at all of those items in State 0 with a e before an A:

State 0 items with eA: [S — eA,§], [A - eA+ B,§], [A - A+ B, +].

In each of those items, we push the e past the A to get State 1 items.

State 1 items: [S — Ae,$],[A > Ae+B,§],[A— Ae+B,+].

Now we take the closure. Since there are no items with a e in front of a non-terminal, we are done (huzzah!).

Where do we go from here? One of our items ([S — Ae, §]) has the dot way at the end of the production. So it’s
a possible reduction. We mark that in State 1 we reduce S — A on $. There are also transitions out of this state for
every symbol after the dot in other items. Here we only see the + symbol after a dot, so there is only one transition
out of here. Let’s say that on + we transition to State 3.

State 2:

How did we get here? We came from State 0 on a. So we start with all of the State 0 items that have a dot
before an a:

State 0 items: [A — ea,$], [A — ea, +].

And then we push the dot past the a.

State 2 items: [A — ae,§], [A — ae, +].

Now we take the closure by looking for places where there is a dot before a non-terminal. Huzzah, there are none.
So we’re done with the closure. In this state, all of our items have the dot at the end of the production. So we only
have reductions here. We mark that on + or $, reduce A — a. There are no transitions out of this state because there
are no items with a dot before another symbol.

State 3:

We are in this state if we started in State 1 and saw a +. So we take all of the items from State 1 with a dot
before a +.

Select State 1 items: [A > Ae+B,§], [A > Ae+B, +].

Now we push the e past the + to get the State 3 items.

State 3 items: [A -+ A+ oB,§], [A -+ A+ eB,+].

Now we have to take the closure. Uh-oh! This time there is a dot before a non-terminal. Two dots before non-
terminals, in fact. Let’s bring in the closure of item [A — A + eB, §] first. We need to bring in all of the productions
of the form B — something. The lookahead token will remain $. So that brings in the item [B — b,$]. Now
let’s bring in the closure of the item [A — A + B, +]. This time the lookahead token will be +. This brings in the
item [B — eb,+]. Now we’re done taking the closure (because there are no new productions with a dot before a
non-terminal).

State 3 final tally: [A - A+ eB,§$], [A &> A+ eB,+], [B — b, 8], [B — &b, +].

What can we do in State 3?7 There are no dots at the end of a production, so there are no reductions here. But
there are dots before symbols. We have one transition out for each symbol after a dot. In the items we see that there
is a e before B and b. So we’ll have two transitions out. Let’s say that on B we transition to State 4 and on b we
transition to State 5.

State 4.

We got here from State 3 on B. So we start with all the State 3 items that have a dot before a B.

Select State 3 items: [A > A+ eB,$], [A > A+ B, +].

Now we push the e past the B.

State 4 items: [A — A+ Be,§], [A - A+ Be, +].

Now we take the closure. There are no dots before non-terminals. Huzzah! So we’ve got all of the items for State
4. What can we do here? Well, there are dots at the end of productions, so reductions are possible. In particular, on
$ or + we reduce A — A + B. There are no items with dots in front of symbols, so no transitions are possible.

State 5.

We got here from State 3 on b. So take all of the State 3 items that have eb in them:

Select State 3 items: [B — ob,$], [B — ob, +].

Now we push the dot past the b to get State 5 items.

State 5 items: [B — be,§], [B — be, +].

What can we do here? Reductions! We have dots at the ends of productions, so on $ or + we reduce B — b. There
are no dots in front of symbols, so there are no transitions out of here. So we’re done with this state.

And that’s it. No more states to deal with. If you’ve been following along, you’ve drawn a pretty picture of the
annotated DFA. Tt has six states (numbered 0 through 5) and five transitions. Let’s make the LR action/goto table
for it. That’s a table where the states are the rows and the terminals/non-terminals are the columns:

Ll e« [& [+ [8 | A [B |

[N RV VI)

Let’s fill in the row for State 0 together. Looking back at our notes above, we see that on A we transition to
State 1 and on a we transition to State 2. Transitions on terminals like a are called “shifts” and transitions on
non-terminals like A are marked as “gotos”.

L I a [b]+[8] A [B]
[0 [shift2] | | [gotol]| |

All of the other entries are blank. So, for example, if we are parsing and we are in State 0 and we see a +, it’s a
parse error.

Now let’s fill in the row for State 1. Checking our notes we see that on $ we reduce S — A and + we transition
to 3. Once again, a transition on a terminal like + is a “shift”.

L alb] + | $ [A]
[1]] | [shift3][reduceS—>A] |

B

Now that we’ve seen all of the possible cell entries (shift, reduce and goto), let’s fill in the rest of the table all at

once. If you’re following along at home, fill out the blank table on the previous page without looking at the answer
here and then check to see if you got it right.

L[a [b | + | $ | A | B |
0 || shift 2 goto 1
1 shift 3 reduce S — A
2 reduce A — a reduce A — a
3 shift 5 goto 4
4 reduce A+ A+ B | reduce A—> A+ B
5 reduce B — b reduce B — b

Great! That table worked out perfectly. Sometimes you end up with a cell with two entries. For example, for
some other grammar maybe in State 7 when you see a * you want to shift to 8 and reduce Q — E/T. That’s called a
shift /reduce conflict. There are also reduce/reduce conflicts. This table does not have any of those, so the grammar
is LR(1). Convenient, since this is supposed to be an LR(1) example. :-)

Now that we have the table, let’s practice parsing something. How about the string a + b + b? Take a moment to
verify that it’s in the grammar (does anyone actually do that when the book or notes asks them to? I thought not).

When we say “parsing” here, we’re trying to get a derivation for S —* a+ b+ b. LR parsing will give us the reverse
of a right-most derivation by reading the input left to right. Since this grammar is unambiguous (take a moment to
verify that!) the right-most derivation is the same as the left-most derivation (it’s the only derivation).

When we simulate parsing, we have to keep track of the Stack and the remaining input. We can use the the DFA
or the Table to figure out what state we are in given the Stack. Each time we perform a reduction we get part of the
derivation.

We start in State 0 with nothing on the Stack. The input is a + b+ b. We see that on a we shift to State 2. Shift
means “take the first part of the input and put it on the stack”.

So now we’re in State 2 with a on the Stack. The input is +b + b. We see that on + we reduce A — a. Reduce
X — Y means “take Y off the top of the stack and put X there instead”. So we take a off the top of the stack and
put A there instead. But what state are we in now? One way to find out is to run the DFA on the Stack, starting in
State 0. We see that on A we go to State 1. We could also (equivalently, since they hold the same information) use
the Table and the Stack. Starting in State 0 on the Table, we see that on A we goto 1. So any way you slice it we're
in State 1.

So now we’re in State 1 with A on the Stack. The input is +b+ b. We see that on + we shift to State 3. So now
the Stack has A+ (where the top of the Stack is on the right) and the input has b+ b.

So now we're in State 3 with A+ on the Stack and b + b left in the input. We look up (3,b) in the table and find
that we should shift to State 5. So we take the b from the input and put it on the Stack, leaving us with +b in the
input and A 4+ b on the Stack.

Now we’re in State 5 with A + b on the Stack and +b left in the input. Looking in the table we see that on +
we reduce B — b. So we take the b off the top of the stack and replace it with a B, giving us A + B. The input is
unchanged. Where are we now? We have to feed the Stack to the DFA (or the Table) to find out. Starting in State
0, on A we goto State 1 and then on + we goto State 3 and then on B we goto State 4. So we’re in State 4.

Now we’re in State 4 and we have A 4+ B on the Stack and +b left in the input. On + we see that we reduce
A — A+ B, so we take A+ B off the Stack and put an A there. So now the Stack has just A. The input is unchanged.
What state are we in? Run the DFA (or the Table) on the Stack starting from State 0. On A we goto State 1, so
that’s it.

Here we are in State 1 with A on the Stack and +b left in the input. The action is “shift 3”, so we consume the
+ and put it on the Stack, giving us A+ on the Stack and b left in the input.

So now we’re in State 3 with A+ on the Stack and b in the input. On b we shift to State 5. So now we have
A + b on the Stack and $ left in the input. We better not do any more shifts, because we don’t have any input left to
consume!

Now we’re in State 5 with A + b on the Stack and $ in the input. State 5 on $§ reduces B — b, so we take the
b off the top of the stack and replace it with B. That gives us A + B. What state are we in? Run the DFA (or the
Table) on the Stack. Starting in State 0, on A we goto State 1 and then on + we goto State 3 and then on B we
goto State 4. So State 4 it is.

Now we’re in State 4 with A + B on the Stack and $ in the input. We reduce A — A + B, so now the Stack is A
and we should go to State 1. (Why? For a hint, look at what we did in State 4 last time.)

Now we’re in State 1 with A on the Stack and $ in the input. So we reduce S — A. So now the stack has S and
the input is $. Since S is what we wanted to end up with and we covered all the input, by convention we accept. We
could also have had an explicit “accept” somewhere in our Table, but that’s not critically important.

I hope you had fun with LR(1) parsing!

