
1

#1

Language SecurityLanguage Security

Or: bringing a knife to a gun fight

#2

One-Slide Summary

• A language’s design principles and features
have a strong influence on the security of
programs written in that language.

• C’s legacy of null-terminated, stack-
allocated and non-sized buffers leads
directly to the most common sort of security
vulnerability: the buffer overrun.

• What can be done?

#3

Lecture Outline

• Beyond interpreters

– Looking at other issues in programming language
design and tools

• C

– Arrays

– Exploiting buffer overruns

– Detecting buffer overruns

2

#4

Duck-billed Platitudes

• Language design has profound influence on

– Safety

– Efficiency

– Security

#5

C Design Principles

• Small language

• Maximum efficiency

• Safety less important

• Designed for the world in 1972

– Weak machines

– Trusted networks

#6

Arrays in C

char buffer[100];

Declares and allocates an array of 100 chars

100*sizeof(char)

0 1 2 99

3

#7

C Array Operations

char buf1[100], buf2[100];

Write:

buf1[0] = ‘a’;

Read:

return buf2[0];

#8

What’s Wrong with this Picture?

/* strcpy buf1 into buf2 */

int i;

for (i = 0; buf1[i] != ‘\0’; i++) {

buf2[i] = buf1[i];

}

buf2[i] = ‘\0’;

#9

Indexing Out of Bounds

The following are all legal C and may generate
no run-time errors

char buffer[100];

buffer[-1] = ‘a’;

buffer[100] = ‘a’;

buffer[100000] = ‘a’;

4

#10

Why Ask Why?

•Why does C allow out of bounds
array references?

– Proving at compile-time that all array
references are in bounds is very
difficult (why?)

– Checking at run-time that all array
references are in bounds is expensive
(who does this?)

#11

Code Generation for Arrays

• The C code:
buf1[i] = 1; /* buf1 has type int[] */

C with bounds checks
r1 = &buf1;
r2 = load i;
r3 = r2 * 4;
if r3 < 0 then error;
r5 = load limit of buf1;
if r3 >= r5 then error;
r4 = r1 + r3
store r4, 1

Regular C
r1 = &buf1;
r2 = load i;
r3 = r2 * 4;

r4 = r1 + r3
store r4, 1

• The assembly code:

Costly!

Finding the
array limits
is non-trivial

#12

C vs. Java

• Typical work for a C array reference

– Offset calculation

– Memory operation (load or store)

• Typical work for a Java array reference

– Offset calculation

– Memory operation (load or store)

– Array bounds check

– Type compatibility check (for stores) (why?)

5

#13

Buffer Overruns

• A buffer overrun writes past the end of an
array

• Buffer usually refers to a C array of char

– But can be any array

• So who’s afraid of a buffer overrun?

– Cause a core dump

– Can damage data structures

– What else?

#14

Stack Smashing
Buffer overruns can alter the control flow of

your program!

char buffer[100]; /* stack-allocated array */

100 *sizeof(char)

0 1 2 99 return address

#15

An Overrun Vulnerability

void foo(char in[]) {

char buffer[100];

int i = 0;

for(i = 0; in[i] != ‘\0’; i++)

buffer[i] = in[i];

buffer[i] = ‘\0’;

}

6

#16

An Interesting Idea

char in[104] = { 0,…,0, magic 4 chars }

foo(in); (**)

100 *sizeof(char)

0 1 2 99 return address
foo entry

(**)

100 *sizeof(char)

0 1 2 99 return address
foo exit

magic 4 chars

#17

Discussion

• So we can make foo jump
wherever we like!

• How is this possible?

• Unanticipated interaction of two features:

– Unchecked array operations

– Stack-allocated arrays
• Knowledge of frame layout allows prediction of where

array and return address are stored

– Note the “magic cast” from char to an address

#18

The Rest of the Story

• Say that foo is part of a network server and
the in originates in a received message
– Some remote user can make foo jump anywhere!

• But where is a “useful” place to jump?
– Idea: Jump to some code that gives you control

of the host system (e.g. code that spawns a
shell)

• But where to put such code?
– Idea: Put the code in the same buffer and jump

there!

7

#19

Useful Jumps

• Where to jump?

• We want to take control of the program

• How about to a system call?

#20

The Plan

• Force a jump to the following code:

• In C: exec(“/bin/sh”);

• In x86 assembly:

– movl $LC0, (%esp)

– call _exec

– LC0: .ascii “/bin/sh\0”

• In machine code: 0x20, 0x42, 0x00, …

#21

The Plan

char in[104] = { 104 magic chars }

foo(in);

0 1 2 99 return address
foo exit

0x20, 0x42, 0x00, …

• The last 4 bytes in “in” must equal the start of buffer
• That position might depend on many factors !

8

#22

Guess the Location of the
Injected Code

• Trial and error: gives you a ballpark

• Then pad the injected code with NOP

– e.g. add $0, $1, 0x2020
• stores result in $0 which is hardwired to 0 anyway

• Encoded as 0x20202020

0 1 2 99 return address
foo exit

0x20, …, 0x20, 0x20, 0x42, 0x00, …

• Works even with an approximate address of buffer !
The bad code

#23

More Problems

• We do not know exactly where the return
address is
– Depends on how the compiler chose to allocate

variables in the stack frame

• Solution: pad the buffer at the end with many
copies of the “magic return address X”

0 1 2 99

return
address

foo exit

0x20, …, 0x20, 0x20, 0x42, 0x00, …, X, X, X, X, …, X , X, …

The bad code

#24

Even More Problems

• The most common way to copy the bad code in a
stack buffer is using string functions: strcpy,
strcat, etc.

• This means that buf cannot contain 0x00 bytes

– Why?

• Solution:

– Rewrite the code carefully

– Instead of “addiu $4,$0,0x0015 (code 0x20400015)

– Use “addiu $4,$0,0x1126; subiu $4, $4, 0x1111”

9

#25

The State of C Programming

• Buffer overruns are common

– Programmers must do their own bounds checking

– Easy to forget or be off-by-one or more

– Program still appears to work correctly

• In C w.r.t. to buffer overruns

– Easy to do the wrong thing

– Hard to do the right thing

#26

The State of Hacking

• Buffer overruns are the attack of choice
– 40-50% of new vulnerabilities are buffer overrun

exploits

– Many recent attacks of this flavor: Code Red,
Nimda, MS-SQL server, yada yada

– “Buffer overflows have been the most common
form of security vulnerability for the past ten
years …” [OGI DARPA 2000]

• Highly automated toolkits are available to
exploit known buffer overruns
– Look up “script kiddie”

#27

The Sad Reality

• Even well-known buffer overruns are still
widely exploited

– Hard to get people to upgrade millions of
vulnerable machines

• We assume that there are many more
unknown buffer overrun vulnerabilities

– At least unknown to the good guys

10

#28

Static Analysis to
Detect Buffer Overruns

• Detecting buffer overruns before distributing
code would be better

• Idea: Build a tool similar to a type checker
to detect buffer overruns

• This is a popular research area; we’ll present
one idea at random [Wagner, Aiken, …]

– You’ll see more in later lectures

#29

Focus on Strings

• Most important buffer overrun exploits are
through string buffers

– Reading an untrusted string from the network,
keyboard, etc.

• Focus the tool only on arrays of characters

#30

Idea 1: Strings as an
Abstract Data Type

• A problem: Pointer operations and array
dereferences are very difficult to analyze
statically

– Where does *ptr point?

– What does buf[j] refer to?

• Idea: Model effect of string library functions
directly

– Hard code effect of strcpy, strcat, etc.

11

#31

Idea 2: The Abstraction

• Model buffers as pairs of integer ranges

– Alloc min allocated size of the buffer in bytes

– Length max number of bytes actually in use

• Use integer ranges

– [x,y] = { x, x+1, …, y-1, y }

– Alloc and length cannot be computed exactly

#32

The Strategy

• For each program expression, write
constraints capturing the alloc and len of its
string subexpressions

• Solve the constraints for the entire program

• Check for each string variable s

len(s) ���� alloc(s)

#33

The Constraints

char s[n]; n � alloc(s) (or n=alloc(s))

strcpy(dst,src) len(src) � len(dst)

p = strdup(s) len(s) � len(p) &

alloc(s) � alloc(p)

p[n] = ‘\0’ min(len(p),n+1)) � len(p)

12

#34

Constraint Solving

• Solving the constraints is akin to solving
dataflow equations (e.g., constant
propagation)

• Build a graph
– Nodes are len(s), alloc(s)

– Edges are constraints len(s) � len(t)

• Propagate information forward through the
graph
– Special handling of loops in the graph

#35

Results

• This technique found new buffer overruns in
sendmail

– Which is like shooting fish in a barrel …

• Found new exploitable overruns in Linux
nettools package

• Both widely used, previously hand-audited
packages

#36

Limitations

• Tool produces many false positives (why?)

– 1 out of 10 warnings is a real bug

• Tool has false negatives (why?)

– Unsound: may miss some overruns

• But still productive to use

13

#37

Summary

• Programming language knowledge is useful
beyond interpreters

• Useful for programmers

– Understand what you are doing!

• Handy for tools other than compilers

– Big research direction

#38

Homework

• PA5 Due Friday April 27 (3 days)

• Final Examination

– Block 4

– Thursday May 10

– 1400-1700

– MEC 214

