Using Design Patterns

If you do it right, it can be a beautiful thing.

One-Slide Summary

» Design patterns are solutions to recurring
OOP design problems. There are patterns for
constructing objects, structuring data, and
object behavior.

« Since this is PL, we’ll examine how language
features like (multiple) inheritance and
dynamic dispatch relate to design patterns.

Lecture Outline DGSigH Patterns

. Design Patterns Elements qf Reusable :
Object-Oriented Software £
Erich Gamma g
e |terator Richard Helm =
Ralph Johnson %
John Vlissides é
e Observer

« Singleton

CORMOUBM e Crier - B 15

Foreword by Grady Booch

e Mediator

i

What is a design pattern?

» A solution for a recurring problem in a large
object-oriented programming system
- Based on Erich Gamma’s Ph.D. thesis, as presented in
the “gang of four” book

» “Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem,
in such a way that you can use this solution a
million times over, without ever doing it the same
way twice”

- Charles Alexander

Types of design patterns

« Design patterns can be (roughly) grouped
into three categories:

» Creational patterns
- Constructing objects
o Structural patterns

- Controlling the structure of a class, e.g.
affecting the API or the data structure layout

» Behavioral patterns
- Deal with how the object behaves

Iterator design pattern

» Often you may have to move through a collection

- Tree (splay, AVL, binary, red-black, etc.), linked list,
array, hash table, dictionary, etc.

« Easy for arrays and vectors

» But hard for more complicated data structures
- Hash table, dictionary, etc.

» The code doing the iteration should not have to
know the details of the data structure being used
- What if that type is not known at compile time?

 This pattern answers the question: How do you
provide a standard interface for moving through a
collection of objects whose data structure is
unknown?

Iterator pattern

» The key participants in this pattern are:

- The Iterator, which provides an (virtual) interface for
moving through a collection of things

- The Aggregate, which defines the (virtual) interface for
a collection that provides iterators

- The Concretelterator, which is the class that
inherits/extends/implements the Iterator

- The ConcreteAggregate, which is the class that
inherits/extends/ implements the Aggregate

« This pattern is also known as cursor

« lterator is a pattern that shows why we would use
multiple inheritance (or Java Interfaces) - why?

#7

Iterator pattern: Structure

- Iterator

Createlterator() First()

Next()
IsDone()
Currentltem()

ConcreteAggregate

Createlterator() @
T Holy
i scanned-in

i
Iterator(this \mage,
return new Concretel (this) Batman!

Iterator pattern: class Iterator

« We might use an abstract C++ class to define Iterator:

template <class Item>
class Iterator {

What does

public: virtual mean
virtual void First() = 0;) in C++?
virtual void Next() = 0; s @

virtual bool Isbone() const = 0;

virtual Item CurrentItem() const = 0;
protected:

Iterator(Q);

« Any collection class that wants to define an iterator will
define another (concrete iterator) class that inherits from
this class. How would we do this in Cool?

#9

Language Design Segue

« In C++ you specify whether you
want dynamic dispatch on a per-
method basis

- By saying “virtual” or not
- It then applies to all call sites

« In Cool you specify whether you
want dynamic dispatch on a per-
call-site basis

- By saying “@Type” for static dispatch 2N \
or not [

» When is one approach “better”?

Iterator pattern: class
AbstractAggregate
» An abstract C++ class defining AbstractAggregate:

template <class Item>

class AbstractAggregate {

public:
virtual Iterator<Item>* CreateIterator() const = 0;
//...

}

» Any collection class that wants to provide iterators
will inherit from this class

Iterator pattern: class List
» Example List collection class:

template <class Item>
class List : public AbstractAggregate {

public:
List (long size = DEFAULT_LIST_CAPACITY);

Tong count() const; Could also
s . be a hash,
;;em& Get (long index) const; S "e:’::c.

// and the method to provide the iterator...

Iterator pattern: class Listlterator

» We use an abstract C++ class to define the Iterator:

template <class Item>
class ListIterator : public Iterator<Item> {
public:
ListIterator (const List<Item>* aList);
void First(Q;
void Next(Q);
bool Isbone() const;
Item CurrentItem() const;

private:
const List<Item>* _list;
long _current;

« Any collection class that wants to define an iterator will define another
(concrete iterator) class that inherits from this class

Iterator pattern: class Listlterator

template <class Item>
void ListIterator<Item>::First() {
_current = 0;

}

template <class Item>
void ListIterator<Item>::Next() {
_current++;

}

Iterator pattern: class Listlterator

template <class Item>

void ListIterator<Item>::IsDone() const {
return _current >= _list->Count(Q);

}

template <class Item>
void ListIterator<Item>::CurrentItem() const {
if (Isbone())
throw IteratoroutOofBounds;
return _list->Get(_current);

}

Iterator pattern: class List cont’d

» The List class now provides the concrete method
for the Createlterator() abstract method

template <class Item>
Iterator<Item>* List<Item>::CreateIterator() const {
return new ListIterator<Item>(this);

}
« We note that in the List class header:

Iterator<Item>* CreateIterator() const;

Iterator pattern: Structure again

Aggregate AR e TR £ —w! Horator

Createlterator() First()
Next()
IsDone()
Currentltem()

ConcreteAggregate

Createlterator() @

|
rreturn new Concrelelterator(lhis)ﬁ

Iterator pattern: Consequences

» An iterator supports variations in transversal of an
aggregate
- The List class can provide one that iterates forward and
one that iterates backward

- Moving through a tree can be done in pre-order, in-
order, or post-order

« Separate methods can provide iterators for each transversal
manner

« lterators support the aggregate interface

» More than one transversal can be moving through
an aggregate (how?)
- Multiple iterators can be working at any given time

Iterator pattern: Beyond lterators

» Java defines an Iterator interface

- Provides the hasNext(), next(), and remove() methods
A sub-interface of that is the Listlterator

- Sub-interface is “inheritance” for interfaces

- Provides additional methods: hasPrevious(), nextIndex(),
previous(), previousindex(), set()

Some methods can provide a Listlterator
- Arrays, lists, vectors, etc.

* And some cannot

- Hash tables, dictionaries, etc.

Observer design pattern

* When a object changes state, other objects may
have to be notified
- Example: when an car in a game is moved
« The graphics engine needs to know so it can re-render the item
« The traffic computation routines need to re-compute the traffic
pattern

« The objects the car contains need to know they are moving as
well

- Another example: data in a spreadsheet
« The display must be updated

« Possibly multiple graphs that use that data need to re-draw
themselves

» This pattern answers the question: How best to
notify those objects when the subject changes?
- And what if the list of those objects changes?

Observer pattern

» The key participants in this pattern are:
- The Subject, which provides an (virtual) interface for
attaching and detaching observers
- The Observer, which defines the (virtual) updating
interface
- The ConcreteSubject, which is the class that
inherits/extends/implements the Subject

- The ConcreteObserver, which is the class that
inherits/extends/implements the Observer

 This pattern is also known as dependents or
publish-subscribe

» Observer is another pattern that shows why we
would use multiple inheritance

Observer pattern: Structure

Subject observers Observer
Attach(Observer) Update()
Detach(Observer) G
: for all 0 in observers {
WEP0 <= v-~ -+~ o->Update()
}
4 ConcreteObserver

subject oO- -} -4 observerState = 5
c Ypdaigh subject->GetState(

GetState() ©---f- i N observerState
SetState() return subjectState

= = =

subjectState S n =M - - N

Observer pattern: class Observer

» Example abstract C++ Observer class:
class Observer {
public:

virtual ~Observer();

virtual void

Update(Subject* theChagnedsubject) = 0;

protected:

Observer();
}
» Any class that wants to (potentially) observe

another object will inherit from this class

Observer pattern: class Subject

» Abstract C++ class to define the Subject:
class Subject { What does ~
public: p— mean in C++?
virtual ~subject();= —
virtual void Attach (Observer¥*);
virtual void Detach (Observer¥*);
virtual void Notify(Q;
protected:
Subject(Q);
private:
List<Observer*> *_observers;
}
« Any class that can be observed will inherit from
this class

Observer pattern: class Subject

void Subject::Attach (Observer* o) {
_observers->Append(0) ;
}

void Subject::Detach (Observer* o) {
_observers->Remove (0) ;

} Builds on iterators!
; : B How cool are we?
void Subject::Notify(Q { <

ListIterator<oObserver*> i(_observers);
for (i.First(); !i.Isbone(); 1i.Next(Q))
i.CurrentItem()->Update(this);

Observer pattern structure again

Subject observers Observer
Attach(Observer) Update()
Detach(Observer) ¢
i for all o in observers {
Notify() o0 ----- --| o->Update() 4
}
4 ConcreteObserver

subject oO- -} -4 observerState = 5
C Updetal subject->GetState()

GetState() O---F- i N observerState
SetState() return subjectState

subjectState

Observer pattern: Consequences

» Abstract coupling between subject and observer
- Subject has no idea who the observers are (or what type
they are)
 Support for broadcast communication
- Subject can notify any number of observers
- Observer can choose to ignore notification
» Unexpected updates
- Subjects have no idea the cost of an update
- If there are many observers (with many dependent
objects), this can be an expensive operation
- Observers do not know what changed in the subject, and
must then spend time figuring that out

Singleton design pattern

« In many systems, there should often only be one
object instance for a given class
- Print spooler
- File system
- Window manager

« This pattern answers the question: How to design
the class such that any client cannot create more
than one instance of the class?

» The key participants in this pattern are:

- The Singleton, the class which only allows one instance
to be created

Singleton pattern: Structure

Singleton

sticinslancal) O~~~ --"~-=1 return uniquelinstance ﬁ

SingletonOperation()
GetSingletonData()

static uniquelnstance
singletonData

Singleton pattern: class Singleton

« Example C++ Singleton class:

class singleton {
public:
static Singleton* Instance();
protected:
Ssingleton(Q);
private:
static Singleton* _instance;

H
singleton* Singleton::_instance = 0;

singleton* Singleton::Instance() {
if (_instance == 0)
_instance = new Singleton(Q);
return _instance;

10

Singleton pattern: Consequences

« Controlled access to sole instance

- As the constructor is protected, the class controls when an instance
is created

« Reduced name space
- Eliminates the need for global variables that store single instances
« Permits refinement of operations and representations
- You can easily sub-class the Singleton
o Permits a variable number of instances
- The class is easily modified to allow n instances when n is not 1
« More flexible than class operations
- This pattern eliminates the need for class (i.e. static) methods
- Note that (in C++) static methods are never virtual

Mediator design pattern

« What happens if multiple objects have to communicate with
each other
- If you have many classes in a system, then each new class has to
consider how to communicate with each existing class
- Thus, you could have n communication protocols
. Example B et v S |40
- Elements (widgets) in a GUI The quick brown fos...
- Each control has to modify the font Family RS
- But we shouldn’t have each widget have a B
separate communication means with every
other widget L
« This pattern answers the question: How &
to define an object to encapsulate and
control the communication between the
various objects?

Mediator pattern

» The key participants in this pattern are:

- The Mediator, which defines an abstract interface for
how the Colleague classes communicate with each other

- The ConcreteMediator, which implements the Mediator
behavior

- Multiple Colleague classes, each which know the
C?l?creteMediator, but do not necessarily know each
other

« In the GUI example, the classes could be
implemented as follows:

- Mediator: DialogDirector

- ConcreteMediator: FontDialogDirector

- Colleague classes: ListBox, EntryField, RadioButton, etc.

« All these classes inherit from the Widget class

11

Mediator pattern: Structure

mediator | c
[—1
g S

c -{c nereteColl 11 '_.ic j

Mediator pattern: Structure
® mediator
aColleague
mediator
aColleague
aC i mediator
d
aColleague
#35]

Mediator pattern: class
DialogDirector

o Abstract C++ class for a DialogDirector:
class DialogDirector {
public:
virtual ~DialogDirector(Q);
virtual void Showbialog(Q);
virtual void widgetChanged(widget*) = 0;
protected:
DialogDirector(Q);
virtual void Createwidgets() = 0;
}
» Whenever a widget is modified, it will call
the WidgetChanged() method

12

Mediator pattern: class
FontDialogDirector

class FontDialogDirector : public DialogDirector {
public:

FontDialogDirector();

~FontDialogDirector();

void widgetChanged(widget*);
protected:

void Createwidgets(Q);
private:

Button* _ok;

Button* _cancel;

ListBox* _fontList;

EntryField* _fontName;

» Note that we probably would want to make this
class a Singleton as well (via multiple inheritance)

Mediator pattern: method
CreateWidgets()

« An implementation of the CreateWidgets() method
void FontDialogDirector::Createwidgets (O {

_ok = new Button(this);

_cancel = new Button(this);

_fontList = new ListBox(this);

_fontName = new EntryField(this);

// i1l the listBox with the available font names

// assemble the widgets in the dialog

« In the actual dialog, it would probably need more
controls than the above four...

Mediator pattern: method
WidgetChanged()

« An implementation of the WidgetChanged() method
void FontDialogDirector: :widgetChanged (
widget* thechangedwidget

{
if (thechangedwidget == _fontList) {
_fontName->setText (_fontList->GetSelection());
} else if (theChangedwidget == _ok) {
// apply font change and dismiss dialog
//

} else if (thechangedwidget = _cancel) {
// dismiss dialog

}
o Here the actual communication between the
widgets is implemented

13

Mediator pattern: Consequences

« It limits subclassing
- The communication behavior would otherwise have to be distributed
among many sub-classes of the widgets
- Instead, it’s all in the Mediator
« It decouples colleagues
- They don’t have to know how to interact with each other
« It simplifies object protocols

- A Mediator replaces many-to-many communication with a one-to-
many paradigm

« It abstracts how objects cooperate

- How objects communicate is abstracted into the Mediator class
« It centralizes control

- Again, it’s all in the Mediator

- This can make the Mediator quite large and monolithic in a large
system

Creational Design Patterns

Abstract Factory
« Builder

Factory Method
Prototype
Singleton

Structural Patterns

o Adapter

Brid The model-view-controller
* bridge architectural pattern
. Composite should also be mentioned!

» Decorator
» Facade
Flyweight
» Proxy

14

Behavioral Patterns

Chain of Responsibility
Command
Interpreter
Iterator
Mediator
Memento
Observer

State

Strategy
Template Method
Visitor

Homework

» WA8 Due Today
o PA5 Due Friday April 27 (8 days)

15

