Linking, Loading, Libraries

Midterm 2, Grades

» Midterm 2 had a nice spread of grades
- Very Hard: 2(d) - For Loop Opsem
- Hard: 3(b) - Liveness e :=e * e
- Hard: 4(b) - Array<GlassTable> < Array<Table>
- Hard: 4(f) - lub L in Exceptions

 Projected Course Grades (emailed to you)
- Do not include PA5, Final or Extra Credit

- You will vote for topics on the Final in class (Thu
Apr 26 or Tue May 01)

One-Slide Summary

» We want separate compilation for program
pieces. So we must link those compiled
pieces together later. We must resolve
references from one object to another.

« We also want to share libraries between
programs.

» We also want to typecheck separately-
compiled modules.

Lecture Outline

» Object Files

« Linking

« Relocations

« Shared Libraries

» Type Checking

Separate Compilation

» Compile different parts of your program at
different times

» And then link them together later
« This is a big win
- Faster compile times on small changes
- Software Engineering (modularity)
- Independently develop different parts (libraries)

» All major languages and all big projects use
this

Pieces

» A compiled program fragment is called an
object file
» An object file contains
- Code (for methods, etc.)
- Variables (e.g., values for global variables)
- Debugging information

- References to code and data that appear
elsewhere (e.g., printf)

- Tables for organizing the above
» Object files are implicit for interpreters

Two Big Tasks

» The operating system uses virtual memory
so every program starts at a standard
[virtual] address (e.g., address 0)
« Linking involves two tasks
- Relocating the code and data from each object
file to a particular fixed virtual address

- Resolving references (e.g., to variable locations
or jump-target labels) so that they point to
concrete and correct virtual addresses in the
New World Order

#7

Relocatable Object Files

« For this to work, a relocatable object file comes
equipped with three tables
- Import Table: points to places in the code where an
external symbol (variable or method) is references
« List of (external_symbol_name, where_in_code) pairs
« One external_symbol_name may come up many times!
- Export Table: points to symbol definitions in the code
that are exported for use by others
« List of (internal_symbol_name, where_in_code) pairs
- Relocation Table: points to places in the code where
local symbols are referenced
« List of (internal_symbol_name, where_in_code) pairs
« One internal_symbol may come up many times!

C/Asm/Java Example

« Consider this program:
extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
temp = b*b - 4.0*a*c;
if (temp >= 0.0) { goto has_roots; }
throw Invalid_Argument;
has_roots:
return (-b + sqrt(temp)) / (2.0*a);
}

#9

Imports

extern double sqrt(double x);
static double temp = 0.0;

double quadratic(double a, b, c) {
temp = b*b - 4.0*a*c;
if (temp >= 0.0) { goto has_roots; }
throw Invalid_Argument;
has_roots:
return (-b + sqrt(temp)) / (2.0*a);
Nyt

}
0x1000 Import Table:
Replace address used at 0x1008
0x1004 pUSh r1 with final location of sqrt.

0x1008 call loc

sqrt

#10

Exports

extern double sqrt(double x);
0x0200 ri=b

static double temp = 0.0; 0x0204 rMM=r1*r
double quadratic(double a, b, ¢) { gigggg :g = :io* .

temp = b*b - 4.0*a*c;

if (temp >= 0.0) { goto has_roots; }

throw Invalid_Argument;
has_roots:

return (-b + sqrt(temp)) / (2.0*a);

}

Export Table:
We provide quadratic. If anyone else wants its, they can figure out
where 0x0200 is finally relocated to. Call that new location R.
They then replace all of their references to l0Cg ,gratic With R.

1

(Internal) Relocations

extern double sqrt(double x);

, 0x0600 r1=1Id loc,, .
static double temp = 0.0; P

0x0604 ng r1 lochas{roots}

double quadratic(double a, b, c) {
temp = b*b - 4.0*a*c;
if (temp >= 0.0) { goto has_roots; }
throw Invalid_Argument;

has_roots:
Import Table:
-b +
return (b sqrt(temp)) / (2'0 Find final relocated address of
1 temp. Call that R,,,,. Find final

relocated address or 0x0600.
Call that Ry,pe0- Replace address
referenced at Ry,ge0 With Ryemp.

Where did
these numbers
come from?.

Big Linking Example

Relocatable object files Executable objec

A B
Imports Imports
M N X . 2 r1 := &M (2300)
M Exports : | call v (2300)
Exports [V
X
Relocation
Relocation . 1 := &L (1800)
Code Code g 12:=Y (3900)
. - 13 1= X (3300)
= &M o | rt=aLniooo) [« L
call M _8% | r2=vwuoo |« ' M
S g 3:=X P
ata
| S i L
X: e)
i < 25 [paa
| [Data o X
<, g
Y.

Your relocatable object file: main.o

- Exports main(), imports sqrt(), relocations ...

Your math library: math.o

- Exports sqrt(), relocations

- Libraries can have imports: give an example!

- In Unix, math.o lives in libmath.a and -lmath on the

command line will find it

The linker reads them in, picks a fixed final
relocation address for all code and data (15t pass)
and then goes through and modifies every
instruction with a symbol reference (2" pass)

Q: Radio (117 / 842)

This NPR radio show features Tom and Ray
Magliozzi as Click and Clack the Tappet Brothers. It
includes Boston accents, a weekly "Puzzler”, and is
brought to you in part by "Paul Murky of Murky
Research” and the law firm of "Dewey, Cheetham
and Howe".

Q: Movie Music (430 / 842)

» What reason did Dick Van Dyke's character,
in a 1964 Disney film, give for his father
giving his "nose a tweak" and telling him he
was bad?

Q: Cartoons (671 / 842)

« Name all five main characters and the
primary automobile from Scooby Doo,
Where Are You!

Are We Done?

» That was fine, but if two programs both use
math.o they will each get a copy of it
- You can optimize this a bit by only linking and
copying in the parts of a library that you really
need (transitive closure of dependencies), but
that’s just a band-aid
« If we run both programs we will load both
copies of math.o into memory - wasting
memory (recall: they’re identical)!

» How could we go about sharing math.o?

Dynamic Linking

« |dea: shared libraries (.so0) or dynamically
linked libraries (.dll) use virtual memory so
that multiple programs can share the same
libraries in main memory
- Load the library into physical memory once

- Each program using it has a virtual address V
that points to it

- During dynamic linking, resolve references to
library symbols using that virtual address V

» What could go wrong? Code? Security?

Relocations In The DLL

« Since we are sharing the code to math.dll, we
cannot set its relocations separately for each client

+ So if math.dll has a jump to loC ¢ 1abet, that must
be resolved to the same location (e.g., 0x1234) for
all clients
- Because we can only patch the instruction once!

« So either:

- Every program using math.dll agrees to put it at virtual
address location 0x1000 (problems? Unix SVR3 ...)

- math.dll uses no relocations in its code segment (how?)

Position-Independent Code

 Rather than “0x1000: jump to 0x1060”, use
“jump to PC+0x60”
- This code can be relocated to any address
- This is called position-independent code (PIC)
» OK, that works for branches.
» But what about global variables?
- You tell me:
- Where should they live?
- Should they be shared?

Data Linkage Table

« Store shared-library global variable
addresses starting at some virtual address B
- This table of addresses is the linkage table

o Compile the PIC assuming that register 5 (or
GP or ...) will hold the current value of B
- Problems?

» The entry point to a shared library (or the
caller) sets register GP to hold B

- Optimization: of the code and data live at fixed
offsets, can do e.g. GP = ((PC & OxFF00)+0x0100)

22|

Shared Library = Shared Data?

» Typically each client of a shared library X wants its
own copies of X’s globals
- Example: errno in libc

« When dynamically linking, you share the code
segment but get your own copy of the data
segment
- And thus your own base address B to put in GP
- Optimization: use copy-on-write virtual memory

» Detail: use an extra level of indirection when the
PIC shared library code does callbacks to unshared
majn8 or references global variables from unshared
main
- Allows the unshared non-PIC target address to be kept in

the data segment, which is private to each program

23|

Not As Bad As It Looks

Dynamically linked
shared library

main:
*(sp+N) := gp

-- call foo:

t9 := *(gp+A)
jalrt9

£0 = #t0

gp (main)

c

> fo0:

(fo0)
&p (foo) —

G

gp := t9+(E-D)

2p = *(sp+N) Shared code
0 loadX: (PIC)
€0 := *(gp+F) ’
--loadX: 0 1= w0
0 1= *(gp+C) .
t0 := *t0
“ee load Y:
0 i= *(gp+G)
--load Y: 0 i= 0
t0 := *(gp+B) =

Linkage table
(one copy
per process)

Private data
(one copy

per process)

Fully Dynamic Linking

« So far this is all happening at load time when
you start the program
» Could we do it at run-time on demand?
- Decrease load times with many libraries
- Support dynamically-loaded code (e.g., Java)
- Big deal for scripting languages
« Use linkage table as before

- But instead loading the code for foo(), point to a
special stub procedure that loads foo() and all
variables from the library and then updates the
linkage table to point to the newly-loaded foo()

#25]
Type Checking
» So we have separate compilation
» What’s wrong with this picture?
(* Main *)
extern string sqrt(); (* math *)
void main() { export double
string str = sqrt(); sqrt(double a) {
printf(“%s\n”,str); return ...;
return; 3}
3
@ @
#26]

Header or Interface Files

» When we type-check a piece of code we
generate an interface file
- Listing all exported methods and their types
- Listing all exported globals and their types
- The imp map and class map from PA4 suffice
perfectly: just throw away the expression
information
» When we compile a client of a library we
check the interface file for the types of
external symbols
- Can anything go wrong?

Bait And Switch

» Write math.cl where sqrt() returns a string
» Generate interface file

« Give interface file to user

» Write new math.cl: sqrt() returns a double
» Compile source to relocatable objet file

« Give object file to user

 Profit!

Checksums and Name Mangling

» From the interface file, take all of the exported
symbols and all of their types and write them down
in a list, then hash (or checksum) it

Include hash value in relocatable object

Each library client also computes the hash value
based on the interface it was given

At link time, check to make sure the hash values
are the same

- C++ name mangling is the same idea, but done on a per
symbol basis (rather than a per-interface basis)

#29]
Homework
» WAS8 Due Thursday
» PA5 Due Friday April 27 (10 days)
#30]

10

