
1

#1

Profilers and DebuggersProfilers and Debuggers

#2

Introductory Material

• First, who doesn’t know assembly language?
– You’ll get to answer all the assembly questions.
Yes, really.

• Lecture Style:
– “Sit on the table” and pose questions. So, wake
up!

• Lecture Goal:
– After the lecture you’ll think, “Wow, that was all
really obvious. I could have done that.”

#3

One-Slide Summary

• A debugger helps to detect the source of a
program error by single-stepping through
the program and inspecting variable values.

• Breakpoints are the fundamental building
block of debuggers. Breakpoints can be
implemented with signals and special OS
support.

• A profiler is a performance analysis tool that
measures the frequency and duration of
function calls as a program runs.

• Profilers can be event- or sampling-based.

2

#4

Lecture Outline

• Debugging

– Signals

– How Debuggers Works

– Breakpoints

– Advanced Tools

• Profiling

– Event-based

– Statistical

#5

What is a Debugger?

“A software tool that is used to detect the

source of program or script errors, by

performing step-by-step execution of

application code and viewing the content

of code variables.”

-MSDN

#6

Machine-Language Debugger

• Only concerned with assembly code

• Show instructions via disassembly

• Inspect the values of registers, memory

• Key Features (we’ll explain all of them)

– Attach to process

– Single-stepping

– Breakpoints

– Conditional Breakpoints

– Watchpoints

3

#7

Signals

• A signal is an asynchronous notification sent
to a process about an event:

– User pressed Ctrl-C (or did kill %pid)

– Exceptions (divide by zero, null pointer)

– From the OS (SIGPIPE)

• You can install a signal handler – a
procedure that will be executed when the

signal occurs.

– Signal handlers are vulnerable to race

conditions. Why?

#8

Signal Example

#include <stdio.h>
#include <signal.h>

int global = 11;

int my_handler() {
printf("In signal handler, global = %d\n",

global);
exit(1);
}

void main() {
int * pointer = NULL;

signal(SIGSEGV, my_handler) ;

global = 33;

* pointer = 0;

global = 55;

printf("Outside, global = %d\n", global);
}

• What does this

program print?

#9

Attaching A Debugger

• Requires operating system support

• There is a special system call that allows
one process to act as a debugger for a target

– What are the security concerns?

• Once this is done, the debugger can basically

“catch signals” delivered to the target

– This isn’t really what happens, but it’s a good

explanation …

4

#10

Building a Debugger
#include <stdio.h>
#include <signal.h>

#define BREAKPOINT *(0)=0

int global = 11;

int debugger_signal_handler() {
printf(“debugger prompt: \n”);
// debugger code goes here!

}

void main() {
signal(SIGSEGV, debugger_signal_handler) ;

global = 33;

BREAKPOINT;

global = 55;

printf("Outside, global = %d\n", global);
}

• We can then get
breakpoints and
interactive
debugging
– Attach to target

– Set up signal
handler

– Add in exception-
causing
instructions

– Inspect globals,
etc.

#11

Reality

• We’re not really changing
the source code

• Instead, we modify the
assembly

• We can’t insert
instructions
– Because labels are already
set at known constant
offsets

• Instead we change them

.file "example.c"
.globl _global

.data

.align 4
_global:

.long 11

.def ___main

.section .rdata,"dr"
LC0:

.ascii "Outside, global = %d\12\0"

.text
.globl _main

.def _main
_main:

pushl %ebp
movl %esp, %ebp
subl $24, %esp
andl $-16, %esp
movl $0, %eax
addl $15, %eax
addl $15, %eax
shrl $4, %eax
sall $4, %eax
movl %eax, -4(%ebp)
movl -4(%ebp), %eax
call __alloca
call ___main
movl $33, _global
movl $55, _global
movl _global, %eax
movl %eax, 4(%esp)
movl $LC0, (%esp)
call _printf
leave
ret
.def _printf

#12

Adding A

Breakpoint

• Add a breakpoint

just after

“global = 33;”

.file "example.c"
.globl _global

.data

.align 4
_global:

.long 11

.def ___main

.section .rdata,"dr"
LC0:

.ascii "Outside, global = %d\12\0"

.text
.globl _main

.def _main
_main:

pushl %ebp
movl %esp, %ebp
subl $24, %esp
andl $-16, %esp
movl $0, %eax
addl $15, %eax
addl $15, %eax
shrl $4, %eax
sall $4, %eax
movl %eax, -4(%ebp)
movl -4(%ebp), %eax
call __alloca
call ___main
movl $33, _global
movl $55, _global
movl _global, %eax
movl %eax, 4(%esp)
movl $LC0, (%esp)
call _printf
leave
ret
.def _printf

.file "example.c"
.globl _global

.data

.align 4
_global:

.long 11

.def ___main

.section .rdata,"dr"
LC0:

.ascii "Outside, global = %d\12\0"

.text
.globl _main

.def _main
_main:

pushl %ebp
movl %esp, %ebp
subl $24, %esp
andl $-16, %esp
movl $0, %eax
addl $15, %eax
addl $15, %eax
shrl $4, %eax
sall $4, %eax
movl %eax, -4(%ebp)
movl -4(%ebp), %eax
call __alloca
call ___main
movl $33, _global
movl $0, 0
movl _global, %eax
movl %eax, 4(%esp)
movl $LC0, (%esp)
call _printf
leave
ret
.def _printf

Storage Cell:

movl $55, _global

_main + 15

5

#13

Software Breakpoint Recipe

• Debugger has already attached and set up its

signal handler

• User wants a breakpoint at instruction X

• Store (X, old_instruction_at_X)

• Replace instruction at X with “*0=0”

– Pick something illegal that’s 1-byte long

• Signal handler replaces instruction at X with

stored old_instruction_at_X

• Give user interactive debugging prompt

#14

Advanced Breakpoints

• Get register and local values by walking the stack

• Optimization: hardware breakpoints
– Special register: if PC value = HBP register value, signal
an exception

– Faster than software, works on ROMs, only limited
number of breakpoints, etc.

• Feature: condition breakpoint: “break at
instruction X if some_variable = some_value”

• As before, but signal handler checks to see if
some_variable = some_value
– If so, present interactive debugging prompt

– If not, return to program immediately

#15

Single-Stepping

• Debuggers allow you to advance through

code on instruction at a time

• To implement this, put a breakpoint at the

first instruction (= at program start)

• The “single step” or “next” interactive

command is equal to:

– Put a breakpoint at the next instruction

• +4 bytes for RISC, +X bytes for CISC, etc.

– Resume execution

6

#16

Watchpoints

• Sometimes you want to know when a

variable in memory changes

– Perhaps because you have tricky aliasing

problems

• A watchpoint is like a breakpoint, but it
signals when the value at location L changes,

regardless of what instruction is being

executed

• How could we implement this?

#17

Watchpoint Implementation

• Software Watchpoints

– Put a breakpoint at every instruction (ouch!)

– Check the current value of L against a stored

value

– If different, give interactive debugging prompt

– If not, set next breakpoint and continue

• Hardware Watchpoints

– Special register holds L: if the value at L ever

changes, the CPU raises an exception

#18

Source-Level Debugging

• What if we want to …

– Put a breakpoint at a source-level location (e.g.,

breakpoint at main.c line 20)

– Single-step through source-level instructions

(e.g., from main.c:20 to main.c:21)

– Inspect source-level variables (e.g., inspect

local_var, not register AX)

• We’ll need the compiler’s help

• How can we do it?

7

#19

Debugging Information

• The compiler will emit tables

– For every line in the program (e.g., main.c:20), what

assembly instruction range does it map to?

– For every line in the program, what variables are in

scope and where do they live (registers, memory)?

• Put a breakpoint = table lookup

– Put breakpoint at beginning of instruction range

• Single-step = table lookup

– Put next breakpoint at end of instruction range +1

• Inspect value = table lookup

• Where do we put these tables?

#20

How Big Are Those Tables?
/* example.c */
#include <stdio.h>
#include <signal.h>

int my_global_var = 11;

void main() {

int my_local_var = 22;

my_local_var += my_global_var;

printf("Outside, my_local_var = %d\n", my_local_var);
}

“gcc example.c” 9418 bytes
“gcc –g example.c” 23790 bytes

#21

Debugging vs. Optimizing

• We said: the compiler will emit tables

– For every line in the program (e.g., main.c:20),

what assembly instruction range does it map to?

– For every line in the program, what variables are

in scope and where do they live (registers,

memory)?

• What can go wrong if we optimize the

program?

8

#22

Replay Debugging

• Running and single-stepping are handy

• But wouldn’t it be nice to go back in time?

• That is, from the current breakpoint, undo
instructions in reverse order

• Intuition: functional + single assignment
– x = 11; let x0 = 11 in

– x = x + 22; let x1 = x0 + 22 in

– breakpoint ; breakpoint ;

– x = x + 33; let x2 = x1 + 33 in

– print x print x

#23

Time Travel

• Store the state at various times
– time t=0 at program start

– time t=88 after 88 instructions

– … why does this work?

• When the user asks you to go back one step,
you actually go back to the last stored state
and run the program forward again with a
breakpoint
– e.g., to go back from t=150, put breakpoint at
instruction 149 and re-run from t=88’s state

• ocamldebug has this power – try it!

#24

Valgrind
• Valgrind is a suite of tools for debugging and
profiling Linux programs
– Finds memory errors, profiles cache times, profiles call
graphs, profiles heap space

• It does so via dynamic binary translation
– Fancy words for “is an interpreter”

– No need to modify, recompile or relink

– Works with any language

• Can attach gdb to your process, etc.

• Problem: slowdown of 5x-100x
– Rational Purify (commercial) is similar

– PIN (Kim Hazelwood) is >3x faster (local research!)

9

#25

Valgrind Example
int main() {

int some_var = 55;
int array[10];
int i;
for (i=0;i<=10;i++)

array[i] = i;
printf("some_var = %d\n",

some_var);
}

What’s the

output?

#26

Valgrind Example
int main() {

int some_var = 55;
int array[10];
int i;
for (i=0;i<=10;i++)

array[i] = i;
printf("some_var = %d\n",

some_var);
}

[weimer@weimer-laptop ~]$./a.out
some_var = 10

Sadly, valgrind
won’t help you
here. Psych!

#27

DDD
• Gnu Data

Display
Debugger
– Similar in

spirit to Visual
Studio’s built-
in debugger

– But for gdb,
the Java
debugger, the
perl
debugger, the
python
debugger,
etc.

• How does this
work?

10

#28

Profiling

• A profiler is a performance analysis tool that

measures the frequency and duration of

function calls as a program runs.

• Flat profile

– Computes the average call times for functions

but does not break times down based on context

• Call-Graph profile

– Computes call times for functions and also the

call-chains involved

#29

Event-Based Profiling

• Interpreted languages provide special hooks
for profiling
– Java: JVM-Profile Interface, JVM API

– Python: sys.set_profile() module

– Ruby: profile.rb, etc.

• You register a function that will get called
whenever the target program calls a
method, loads a class, allocates an object,
etc.
– You could do this for PA5

#30

JVM Profiling Interface

• VM notifies profiler agent of various events
(heap allocation, thread start, method

invocation, etc.)

• Profiler agent issues control commands to

the JVM and communicates with a GUI

11

#31

Statistical Profiling

• You can arrange for the operating system to
send you a signal (just like before) every X
seconds (see alarm(2))

• In the signal handler you determine the
value of the target program counter
– And append it to a growing list file

– This is called sampling

• Later, you use that debug information table
to map the PC values to procedure names
– Sum up to get amount of time in each procedure

#32

Sampling Analysis
• Advantages

– Simple and cheap – the instrumentation is
unlikely to disturb the program too much

– No big slowdown

• Disadvantages
– Can completely miss periodic behavior (e.g., you
sample every k seconds but do a network send at
times 0.5 + nk seconds)

– High error rate: if a value is n times the sampling
period, the expected error in it is sqrt(n)
sampling periods

• Read the gprof paper for midterm2

#33

One-Slide Summary

• Real-world programs must have error-
handling code. Errors can be handled where
they are detected or the error can be
propagated to a caller.

• Passing special error return codes is itself
error-prone.

• Exceptions are a formal and automated way
of reporting and handling errors. Exceptions
can be implemented efficiently and
described formally.

12

#34

Homework

• Midterm 2 – Thursday April 12 (2 days)

– Covers Lectures 10 – 21 and all reading, WA’s

and PA’s done during that time

– Everything after LR parsing

• Midterm 2 Review Session

– Olsson 228E, 5pm – 6pm

