
1

#1

Automatic Memory ManagementAutomatic Memory Management

#2

One-Slide Summary

• An automatic memory management system

deallocates objects when they are no longer used

and reclaims their storage space.

• We must be conservative and only free objects

that will not be used later.

• Garbage collection scans the heap from a set of

roots to find reachable objects. Mark and Sweep

and Stop and Copy are two GC algorithms.

• Reference Counting stores the number of pointers

to an object with that object and frees it when

that count reaches zero.

#3

Lecture Outine

• Why Automatic Memory Management?

• Garbage Collection

• Three Techniques

– Mark and Sweep

– Stop and Copy

– Reference Counting

2

#4

Why Automatic Memory

Management?
• Storage management is still a hard problem

in modern programming

• C and C++ programs have many storage bugs

– forgetting to free unused memory

– dereferencing a dangling pointer

– overwriting parts of a data structure by accident

– and so on... (can be big security problems)

• Storage bugs are hard to find

– a bug can lead to a visible effect far away in

time and program text from the source

#5

Type Safety and

Memory Management
• Some storage bugs can be prevented in a
strongly typed language
– e.g., you cannot overrun the array limits

• Can types prevent errors in programs with
manual allocation and deallocation of
memory?
– Some fancy type systems (linear types) were
designed for this purpose but they complicate
programming significantly

• If you want type safety then you must use
automatic memory management

#6

Automatic Memory Management

• This is an old problem:
– Studied since the 1950s for LISP

– Will you remember PL history for the final?

• There are several well-known techniques for
performing completely automatic memory
management

• Until recently they were unpopular outside
the Lisp family of languages
– just like type safety used to be unpopular

3

#7

The Basic Idea

• When an object that takes memory space is

created, unused space is automatically

allocated

– In Cool, new objects are created by new X

• After a while there is no more unused space

• Some space is occupied by objects that will

never be used again (= dead objects?)

• This space can be freed to be reused later

#8

Dead Again?

• How can we tell whether an object will

“never be used again”?

– In general it is impossible (undecideable) to tell

– We will have to use a heuristic to find many (not

all) objects that will never be used again

• Observation: a program can use only the

objects that it can find:

let x : A ←←←← new A in { x ←←←← y; ... }

– After x ←←←← y there is no way to access the newly

allocated object

#9

Garbage

• An object x is reachable if and only if:
– A local variable (or register) contains a pointer
to x, or

– Another reachable object y contains a pointer to
x

• You can find all reachable objects by
starting from local variables and following all
the pointers

• An unreachable object can never by referred
to by the program
– These objects are called garbage

4

#10

Reachability is an Approximation

• Consider the program:

x ← new Ant;

y ← new Bat;

x ← y;

if alwaysTrue() then x ← new Cow else x.eat() fi

• After x ← y (assuming y becomes dead there)

– The object Ant is not reachable anymore

– The object Bat is reachable (through x)

– Thus Bat is not garbage and is not collected

– But object Bat is never going to be used

#11

Cool Garbage

• At run-time we have two mappings:
– Environment E maps variable identifiers to
locations

– Store S maps locations to values

• Proposed Cool Garbage Collector
– for each location l ∈ domain(S)

– let can_reach = false

– for each (v,l2) ∈ E

– if l = l2 then can_reach = true

– if not can_reach then reclaim_location(l)

#12

Cooler Garbage

– Environment E maps variable identifiers to locations

– Store S maps locations to values

• Proposed Cool Garbage Collector

– for each location l ∈ domain(S)

– let can_reach = false

– for each (v,l2) ∈ E

– if l = l2 then can_reach = true

– for each l3 ∈ v // v is X(…, ai = li, …)

– if l = l3 then can_reach = true

– if not can_reach then reclaim_location(l)

5

#13

Garbage Analysis

• Could we use the proposed Cool Garbage

Collector in real life?

• How long would it take?

• How much space would it take?

• Are we forgetting anything?

#14

Tracing Reachable Values

• In cool, local variables are easy to find

– Use the environment mapping E

– and one object may point to other objects, etc.

• The stack is more complex

– each stack frame (activation record) contains:

•method parameters (other objects)

• If we know the layout of a stack frame we

can find the pointers (objects) in it

#15

A Simple Example

• Start tracing from local vars and the stack

– they are called the roots

• Note that B and D are not reachable from

local vars or the stack

• Thus we can reuse their storage

A B C

Frame 1 Frame 2

D Elocal var

stack

6

#16

Elements of Garbage Collection

• Every garbage collection scheme has the

following steps

1. Allocate space as needed for new objects

2. When space runs out:

a) Compute what objects might be used again

(generally by tracing objects reachable from

a set of roots)

b) Free space used by objects not found in (a)

• Some strategies perform garbage collection

before the space actually runs out

#17

Mark and Sweep

• When memory runs out, GC executes two

phases

– the mark phase: traces reachable objects

– the sweep phase: collects garbage objects

• Every object has an extra bit: the mark bit

– reserved for memory management

– initially the mark bit is 0

– set to 1 for the reachable objects in the mark

phase

#18

Mark and Sweep Example

A B C D Froot E

free

0 0 0 0 0 0

A B C D Froot E

free

1 0 1 0 0 1

After mark:

A B C D Froot E

free

0 0 0 0 0 0

After sweep:

7

#19

The Mark Phase

let todo = { all roots } (* worklist *)

while todo ≠ ∅ do

pick v ∈ todo

todo ← todo - { v }

if mark(v) = 0 then (* v is unmarked so far *)

mark(v) ← 1

let v1,...,vn be the pointers contained in v

todo ← todo ∪ {v1,...,vn}

fi

od

#20

The Sweep Phase

• The sweep phase scans the (entire) heap

looking for objects with mark bit 0

– these objects have not been visited in the mark

phase

– they are garbage

• Any such object is added to the free list

• The objects with a mark bit 1 have their

mark bit reset to 0

#21

The Sweep Phase (Cont.)

/* sizeof(p) is the size of block starting at p */
p ← bottom of heap

while p < top of heap do

if mark(p) = 1 then

mark(p) ← 0

else

add block p...(p+sizeof(p)-1) to freelist

fi

p ← p + sizeof(p)

od

8

#22

Mark and Sweep Analysis

• While conceptually simple, this algorithm

has a number of tricky details

– this is typical of GC algorithms

• A serious problem with the mark phase

– it is invoked when we are out of space

– yet it needs space to construct the todo list

– the size of the todo list is unbounded so we

cannot reserve space for it a priori

#23

Mark and Sweep Details

• The todo list is used as an auxiliary data
structure to perform the reachability
analysis

• There is a trick that allows the auxiliary data
to be stored in the objects themselves

– pointer reversal: when a pointer is followed it is
reversed to point to its parent

• Similarly, the free list is stored in the free
objects themselves

#24

Mark and Sweep Evaluation

• Space for a new object is allocated from the

new list

– a block large enough is picked

– an area of the necessary size is allocated from it

– the left-over is put back in the free list

• Mark and sweep can fragment memory

• Advantage: objects are not moved during GC

– no need to update the pointers to objects

– works for languages like C and C++

9

#25

Another Technique:

Stop and Copy
• Memory is organized into two areas

– Old space: used for allocation

– New space: used as a reserve for GC

old space new space

heap pointer

• The heap pointer points to the next free word in

the old space

• Allocation just advances the heap pointer

#26

Stop and Copy GC

• Starts when the old space is full

• Copies all reachable objects from old space

into new space

– garbage is left behind

– after the copy phase the new space uses less

space than the old one before the collection

• After the copy the roles of the old and new

spaces are reversed and the program

resumes

#27

Stop and Copy Garbage

Collection. Example

A B C D Froot E

Before collection:

new space

A C F

root

new space

After collection:

free

heap pointer

10

#28

Implementing Stop and Copy

• We need to find all the reachable objects
– Just as in mark and sweep

• As we find a reachable object we copy it into
the new space
– And we have to fix ALL pointers pointing to it!

• As we copy an object we store in the old
copy a forwarding pointer to the new copy
– when we later reach an object with a forwarding
pointer we know it was already copied

– How can we identify forwarding pointers?

#29

Implementation of Stop and Copy

• We still have the issue of how to implement

the traversal without using extra space

• The following trick solves the problem:

– partition new space in three contiguous regions

copied and scanned

scan

copied objects
whose pointer
fields were followed
and fixed

copied objects
whose pointer
fields were NOT
followed

emptycopied

allocstart

#30

Stop and Copy. Example (1)

A B C D Froot E new space

• Before garbage collection

start
scan
alloc

11

#31

Stop and Copy. Example (2)

A B C D Froot E

• Step 1: Copy the objects pointed by roots

and set forwarding pointers (dotted arrow)

A

start
scan

alloc

#32

Stop and Copy. Example (3)

A B C D Froot E

• Step 2: Follow the pointer in the next

unscanned object (A)

– copy the pointed objects (just C in this case)

– fix the pointer in A

– set forwarding pointer

A

scan
alloc

C

start

#33

Stop and Copy. Example (4)

A B C D Froot E

• Follow the pointer in the next unscanned

object (C)

– copy the pointed objects (F in this case)

A

scan
alloc

C F

start

12

#34

Stop and Copy. Example (5)

A B C D Froot E

• Follow the pointer in the next unscanned

object (F)

– the pointed object (A) was already copied. Set

the pointer same as the forwading pointer

A

scan
alloc

C F

start

#35

Stop and Copy. Example (6)

root

• Since scan caught up with alloc we are done

• Swap the role of the spaces and resume the

program

A

scan
alloc

C Fnew space

#36

The Stop and Copy Algorithm

while scan ≠ alloc do
let O be the object at scan pointer
for each pointer p contained in O do

find O’ that p points to
if O’ is without a forwarding pointer

copy O’ to new space (update alloc pointer)
set 1st word of old O’ to point to the new copy
change p to point to the new copy of O’

else
set p in O equal to the forwarding pointer

fi
end for
increment scan pointer to the next object

od

13

#37

Stop and Copy Details

• As with mark and sweep, we must be able to

tell how large an object is when we scan it

– And we must also know where the pointers are

inside the object

• We must also copy any objects pointed to by

the stack and update pointers in the stack

– This can be an expensive operation

#38

Stop and Copy Evaluation

• Stop and copy is generally believed to be the

fastest GC technique

• Allocation is very cheap

– Just increment the heap pointer

• Collection is relatively cheap

– Especially if there is a lot of garbage

– Only touch reachable objects

• But some languages do not allow copying

– C, C++, …

#39

Why Doesn’t C Allow Copying?

• Garbage collection relies on being able to

find all reachable objects

– And it needs to find all pointers in an object

• In C or C++ it is impossible to identify the

contents of objects in memory

– e.g., how can you tell that a sequence of two

memory words is a list cell (with data and next

fields) or a binary tree node (with a left and

right fields)?

– Thus we cannot tell where all the pointers are

14

#40

Conservative Garbage Collection

• But it is OK to be conservative:
– If a memory word “looks like” a pointer it is
considered to be a pointer
• it must be aligned (what does this mean?)

• it must point to a valid address in the data segment

– All such pointers are followed and we
overestimate the reachable objects

• But we still cannot move objects because we
cannot update pointers to them
– What if what we thought to be a pointer is
actually an account number?

#41

Reference Counting

• Rather that wait for memory to be

exhausted, try to collect an object when

there are no more pointers to it

• Store in each object the number of pointers

to that object

– This is the reference count

• Each assignment operation has to

manipulate the reference count

#42

Implementing Reference Counts

• new returns an object with a reference

count of 1

• If x points to an object then let rc(x) refer to

the object’s reference count

• Every assignment x ← y must be changed:

rc(y) ← rc(y) + 1

rc(x) ← rc(x) - 1

if (rc(x) == 0) then mark x as free

x ← y

15

#43

Reference Counting Evaluation

• Advantages:

– Easy to implement

– Collects garbage incrementally without large

pauses in the execution

•Why would we care about that?

• Disadvantages:

– Manipulating reference counts at each

assignment is very slow

– Cannot collect circular structures

#44

Garbage Collection Evaluation

• Automatic memory management avoids some

serious storage bugs

• But it takes away control from the

programmer

– e.g., layout of data in memory

– e.g., when is memory deallocated

• Most garbage collection implementation stop

the execution during collection

– not acceptable in real-time applications

#45

Garbage Collection Evaluation

• Garbage collection is going to be around for

a while

• Researchers are working on advanced

garbage collection algorithms:

– Concurrent: allow the program to run while the

collection is happening

– Generational: do not scan long-lived objects at

every collection (infant mortality)

– Parallel: several collectors working in parallel

– Real-Time / Incremental: no long pauses

16

#46

In Real Life

• Python uses Reference Counting

– Because of “extension modules”, they deem it

too difficult to determine the root set

– Has a special separate cycle detector

• Perl does Reference Counting + cycles

• Ruby does Mark and Sweep

• OCaml does (generational) Stop and Copy

• Java does (generational) Stop and Copy

#47

Homework

• WA7 due this Thursday

• For Thursday – Read chapter 8.5

• Midterm 2 – Thursday April 12 (9 days)

– Covers Lectures 12 – 21 and all reading, WA’s and

PA’s done during that time

