
1

#1

Local Local

OptimizationsOptimizations

#2

One-Slide Summary

• An optimization changes a program so that
it computes the same answer in less time (or
using less of some other resource).

• We represent the program using a special
intermediate form.

• Each method is viewed as a control flow
graph where the nodes as basic blocks of
instructions with known entry and exit
points. The instructions have been changed
so that a single assignment defines each
variable.

#3

Lecture Outline

• Intermediate code

• Local optimizations

• Next time: larger-scale program analyses

2

#4

When To Optimize?

• When to perform optimizations

– On AST (just like type checking)

• Pro: Machine independent

• Cons: Too high level

– On assembly language (compilers only)

• Pro: Exposes optimization opportunities

• Cons: Machine dependent

• Cons: Must reimplement optimizations when retargetting

– On an intermediate language

• Pro: Machine independent

• Pro: Exposes optimization opportunities

• Cons: One more language to worry about

#5

Intermediate Languages

• Each compiler uses its own intermediate
language
– IL design is still an active area of research

• Intermediate language = high-level assembly
language
– Uses register names, but has an unlimited
number

– Uses control structures like assembly language

– Uses opcodes but some are higher level
• e.g., push translates to several assembly instructions

• Most opcodes correspond directly to assembly opcodes

#6

Three-Address Intermediate Code

• Each instruction is of the form

x := y op z

– y and z can be only registers, variables or

constants

• Common form of intermediate code

• The AST expression x + y * z is translated as

t1 := y * z

t2 := x + t1
– Each subexpression lives in a temporary

3

#7

Generating Intermediate Code

• igen(e, t) function generates code to

compute the value of e in register t

• Example:

igen(e1 + e2, t) =

igen(e1, t1) (t1 is a fresh register)

igen(e2, t2) (t2 is a fresh register)

t := t1 + t2

• Unlimited number of registers

⇒ simple code generation

#8

An Intermediate Language

P → S P | ε

S → id := id op id

| id := op id

| id := id

| push id

| id := pop

| if id relop id goto L

| L:

| jump L

• id’s are register names

• Constants can replace id’s

• Typical operators: +, -, *

#9

Basic Blocks

• A basic block is a maximal sequence of
instructions with:
– no labels (except at the first instruction), and

– no jumps (except in the last instruction)

• Idea:
– Cannot jump into a basic block (except at
beginning)

– Cannot jump out of a basic block (except at end)

– Each instruction in a basic block is executed
after all the preceding instructions have been
executed

4

#10

Basic Block Example

• Consider the basic block

1. L1:

2. t := 2 * x

3. w := t + x

4. if w > 0 goto L2

• No way for (3) to be executed without (2)

having been executed right before

– We can change (3) to w := 3 * x

– Can we eliminate (2) as well?

#11

Control-Flow Graphs

• A control-flow graph is a directed graph:

– Basic blocks as nodes

– An edge from block A to block B if the execution

can flow from the last instruction in A to the

first instruction in B

– e.g., the last instruction in A is jump LB

– e.g., the execution can fall-through from block A

to block B

• Frequently abbreviated as CFG

#12

Control-Flow Graphs. Example.

• The body of a method (or

procedure) can be

represented as a control-

flow graph

• There is one initial node

– The “start node”

• All “return” nodes are

terminal

x := 1

i := 1

L:

x := x * x

i := i + 1

if i < 10 goto L

5

#13

CFG ≃ Flow Chart

#14

Optimization Overview

• Optimization seeks to improve a program’s

utilization of some resource

– Execution time (most often)

– Code size

– Network messages sent

– Battery power used, etc.

• Optimization should not alter what the

program computes

– The answer must still be the same

#15

A Classification of Optimizations

• For languages like C and Cool there are three
granularities of optimizations
1. Local optimizations

• Apply to a basic block in isolation

2. Global optimizations
• Apply to a control-flow graph (method body) in isolation

3. Inter-procedural optimizations
• Apply across method boundaries

• Most compilers do (1), many do (2) and very few
do (3)

• Some interpreters do (1), few do (2), basically
none do (3)

6

#16

Cost of Optimizations

• In practice, a conscious decision is made not

to implement the fanciest optimization

known

• Why?

– Some optimizations are hard to implement

– Some optimizations are costly in terms of

compilation/interpretation time

– The fancy optimizations are both hard and costly

• The goal: maximum improvement with

minimum of cost

#17

Local Optimizations

• The simplest form of optimizations

• No need to analyze the whole procedure

body

– Just the basic block in question

• Example:

– algebraic simplification

– constant folding

– Python 2.5 does stuff like this if you say “–O”

#18

Algebraic Simplification

• Some statements can be deleted

x := x + 0

x := x * 1

• Some statements can be simplified

x := x * 0 ⇒ x := 0

y := y ** 2 ⇒ y := y * y

x := x * 8 ⇒ x := x << 3

x := x * 15 ⇒ t := x << 4; x := t - x

(on some machines << is faster than *; but not on

all!)

7

#19

Constant Folding

• Operations on constants can be computed

before the code executes

• In general, if there is a statement

x := y op z

– And y and z are constants

– Then y op z can be computed early

• Example: x := 2 + 2 ⇒ x := 4

• Example: if 2 < 0 jump L can be deleted

• When might constant folding be dangerous?

#20

Flow of Control Optimizations

• Eliminating unreachable code:

– Code that is unreachable in the control-flow graph

– Basic blocks that are not the target of any jump or “fall

through” from a conditional

– Such basic blocks can be eliminated

• Why would such basic blocks occur?

• Removing unreachable code makes the program

smaller

– And sometimes also faster

• Due to memory cache effects (increased spatial locality)

#21

Single Assignment Form

• Most optimizations are simplified if each
assignment is to a temporary that has not
appeared already in the basic block

• Intermediate code can be rewritten to be
in single assignment form
x := a + y x := a + y

a := x ⇒ a1 := x

x := a * x x1 := a1 * x

b := x + a b := x1 + a1
(x1 and a1 are fresh temporaries)

8

#22

Single Assignment vs.

Functional Programming

• In functional programming variable values
do not change

• Instead you make a new variable with a
similar name

• Single assignment form is just like that!
x := a + y let x = a + y in

a1 := x ≃ let a1 = x in

x1 := a1 * x let x1 = a1
* x in

b := x1 + a1 let b = x1 + a1 in

#23

Common Subexpression

Elimination
• Assume:

– Basic block is in single assignment form

• Then all assignments with same rhs

compute the same value (why?)

• Example:

x := y + z x := y + z

… ⇒ …

w := y + z w := x

• Why is single assignment important here?

#24

Copy Propagation

• If w := x appears in a block, all subsequent uses of

w can be replaced with uses of x

• Example:

b := z + y b := z + y

a := b ⇒ a := b

x := 2 * a x := 2 * b

• This does not make the program smaller or faster

but might enable other optimizations

– Constant folding

– Dead code elimination (we’ll see this in a bit!)

• Again, single assignment is important here.

9

#25

Copy Propagation and

Constant Folding
• Example:

a := 5 a := 5

x := 2 * a ⇒ x := 10

y := x + 6 y := 16

t := x * y t := x << 4

#26

Dead Code Elimination

If

w := rhs appears in a basic block

w does not appear anywhere else in the program

Then

the statement w := rhs is dead and can be eliminated

– Dead = does not contribute to the program’s result

Example: (a is not used anywhere else)

x := z + y b := z + y b := z + y

a := x ⇒ a := b ⇒ x := 2 * b

x := 2 * a x := 2 * b

#27

Applying Local Optimizations

• Each local optimization does very little by
itself

• Typically optimizations interact
– Performing one optimizations enables other opts

• Typical optimizing compilers repeatedly
perform optimizations until no improvement
is possible

• Interpreters and JITs must be fast!
– The optimizer can also be stopped at any time to
limit the compilation time

10

#28

An Example

• Initial code:
a := x ** 2

b := 3

c := x

d := c * c

e := b * 2

f := a + d

g := e * f

#29

An Example

• Algebraic optimization:
a := x ** 2

b := 3

c := x

d := c * c

e := b * 2

f := a + d

g := e * f

#30

An Example

• Algebraic optimization:
a := x * x

b := 3

c := x

d := c * c

e := b + b

f := a + d

g := e * f

11

#31

An Example

• Copy propagation:
a := x * x

b := 3

c := x

d := c * c

e := b + b

f := a + d

g := e * f

#32

An Example

• Copy propagation:
a := x * x

b := 3

c := x

d := x * x

e := 3 + 3

f := a + d

g := e * f

#33

An Example

• Constant folding:
a := x * x

b := 3

c := x

d := x * x

e := 3 + 3

f := a + d

g := e * f

12

#34

An Example

• Constant folding:
a := x * x

b := 3

c := x

d := x * x

e := 6

f := a + d

g := e * f

#35

An Example

• Common subexpression elimination:
a := x * x

b := 3

c := x

d := x * x

e := 6

f := a + d

g := e * f

#36

An Example

• Common subexpression elimination:
a := x * x

b := 3

c := x

d := a

e := 6

f := a + d

g := e * f

13

#37

An Example

• Copy propagation:
a := x * x

b := 3

c := x

d := a

e := 6

f := a + d

g := e * f

#38

An Example

• Copy propagation:
a := x * x

b := 3

c := x

d := a

e := 6

f := a + a

g := 6 * f

#39

An Example

• Dead code elimination:
a := x * x

b := 3

c := x

d := a

e := 6

f := a + a

g := 6 * f

14

#40

An Example

• Dead code elimination:
a := x * x

f := a + a

g := 6 * f

• This is the final form

#41

Cool and Intermediate Form

• Cool does not have goto

• Cool does not have break

• Cool does not have exceptions

• How would you make basic blocks from a

Cool AST?

#42

Local Optimization Notes

• Intermediate code is helpful for many

optimizations

– Basic Blocks: known entry and exit

– Single Assignment: one definition per variable

• “Program optimization” is grossly misnamed

– Code produced by “optimizers” is not optimal in

any reasonable sense

– “Program improvement” is a more appropriate

term

• Next: larger-scale program changes

15

#43

Homework

• PA4 due this Friday March 30th (3 days)

• Midterm 2 – Thursday April 12 (17 days)

