ALLOWED

L
ALL PETS MUST
BE ON LEASH

Operational Semantics

One-Slide Summary

» Operational semantics are a precise way of
specifying how to evaluate a program.

» A formal semantics tells you what each
expression means.

» Meaning depends on context: a variable
environment will map variables to memory
locations and a store will map memory
locations to values.

Lecture Outline

» COOL operational semantics
» Motivation
» Notation

e The rules

Motivation

» We must specify for every Cool expression
what happens when it is evaluated
- This is the meaning of an expression

» The definition of a programming language:
- The tokens = lexical analysis
- The grammar = syntactic analysis
- The typing rules = semantic analysis
- The evaluation rules = interpretation

Evaluation Rules So Far

 So far, we specified the evaluation rules intuitively

- We described how dynamic dispatch behaved in words
(e.g., “just like Java”)

- We talked about scoping, variables, arithmetic
expressions (e.g., “they work as expected”)

« Why isn’t this description good enough?

GO ON, EXPLAN THE
SEMANTICS O YOUR MoM

NIKES, SHE QT
e 52 W YD BAcK.
@ AND SHE'S

TM NOT BAD. . EXUBERANT/
TM JST..UM.. THERE'S NOTHING
WRONG WITH
&5, BEING EXUBERANT!
X1
%, o
lz_ &

Assembly Language
Description of Semantics

» We might just tell you how to compile it

» But assembly-language descriptions of
language implementation have too many
irrelevant details
- Which way the stack grows

- How integers are represented on a particular
machine

- The particular instruction set of the architecture

» We need a complete but not overly
restrictive specification

Programming Language Semantics

» There are many ways to specify programming
language semantics

» They are all equivalent but some are more
suitable to various tasks than others

» Operational semantics

- Describes the evaluation of programs on an
abstract machine

- Most useful for specifying implementations
- This is what we will use for Cool

#7

Other Kinds of Semantics

» Denotational semantics
- The meaning of a program is expressed as a
mathematical object
- Elegant but quite complicated
« Axiomatic semantics
- Useful for checking that programs satisfy certain
correctness properties
« e.g., that the quick sort function sorts an array

- The foundation of many program verification
systems

Introduction to
Operational Semantics

» Once, again we introduce a formal notation
- Using logical rules of inference, just like typing

» Recall the typing judgment
Context Fe:C
(in the given context, expression e has type C)

» We try something similar for evaluation
Contextte:v

(in the given context, expression e evaluates to
value v)

#9

Example Operational Semantics
Inference Rule

Contextt e, : 5
Context e, : 7
Contextte; +e,: 12
« In general the result of evaluating an

expression depends on the result of
evaluating its subexpressions

» The logical rules specify everything that is
needed to evaluate an expression

What Contexts Are Needed?

e Contexts are needed to handle variables

 Consider the evaluation of y + x + 1
- We need to keep track of values of variables
- We need to allow variables to change their
values during the evaluation
» We track variables and their values with:
- An environment : tells us at what address in
memory is the value of a variable stored
- A store : tells us what is the contents of a
memory location

Variable Environments

A variable environment is a map from
variable names to locations

« Tells in what memory location the value of a
variable is stored
- Locations = Memory Addresses

» Environment tracks in-scope variables only

» Example environment:

E=[a:l;, b:L]

 To lookup a variable a in environment E we

write E(a)

Stores

» A store maps memory locations to values
» Example store:
S=[l,—=5, l,—=7]
» To lookup the contents of a location |, in
store S we write S(l,)

» To perform an assignment of 12 to location |,
we write S[12/1,]
- This denotes a new store S’ such that
S(L,)y=12 and S'(l) = S(l)if L=,

Cool Values

« All values in Cool are objects
- All objects are instances of some class (the
dynamic type of the object)
» To denote a Cool object we use the notation
X(@; =1, .., a, = ,) where
- Xis the dynamic type of the object
- a; are the attributes (including those inherited)

- |, are the locations where the values of
attributes are stored

Cool Values (Cont.)

« Special cases (classes without attributes)
Int(5) the integer 5
Bool(true) the boolean true
String(4, “Cool”) the string “Cool” of length 4

» There is a special value void that is a
member of all types
- No operations can be performed on it
- Except for the test isvoid
- Concrete implementations might use NULL here

#15

Operational Rules of Cool

» The evaluation judgment is
so,E,SFe:v,S
read:
- Given so the current value of the self object
- And E the current variable environment
- And S the current store
- If the evaluation of e terminates then
- The returned value is v
- And the new store is §’

Notes

» The “result” of evaluating an expression is
both a value and a new store

» Changes to the store model side-effects
- side-effects = assighments to variables

 The variable environment does not change

» Nor does the value of “self”

» The operational semantics allows for non-
terminating evaluations

» We define one rule for each kind of
expression

Operational Semantics for
Base Values

so, E, S I true : Bool(true), S

so, E, S | false : Bool(false), S

i is an integer literal

so, E, Ski:Int(i), S s is a string literal

n is the length of s

so, E, S+ s : String(n,s), S
« No side effects in these cases
(the store does not change)

Operational Semantics of

Variable References
E(id) = 4
S(lig) = v
so, E,SFid:v, S
» Note the double lookup of variables
- First from name to location
- Then from location to value
» The store does not change

« A special case:

so, E,Stself:so, S

Operational Semantics of
Assignment
so,E,Ste:v, S,

E(id) = |,
S, = S;[v/li]
so,E,Stid«e:v,S,
« A three step process
- Evaluate the right hand side
= a value v and a new store S,
- Fetch the location of the assigned variable
- The result is the value v and an updated store

» The environment does not change

Operational Semantics of
Conditionals

so, E, S+ e, : Bool(true), S,
so, E,S;Fey:v, S,

so, E,Stife, thene,elsee;:v, S,

» The “threading” of the store enforces an evaluation
sequence
- e, must be evaluated first to produce S,
- Then e, can be evaluated
» The result of evaluating e, is a boolean object
- The typing rules ensure this
- There is another, similar, rule for Bool(false)

Operational Semantics of
Sequences

so, E,Ste,;:v,, S,
so,E,S;Fe,:v, S,

so, E S,,Fe,:v,, S,

so,E,S+-{e;;..;e,;}:v,S,
» Again the threading of the store expresses
the intended evaluation sequence
 Only the last value is used

« But all the side-effects are collected (how?)
#22]

Operational Semantics of while (1)

so, E, S+ e, : Bool(false), S,
so, E, S while e, loop e, pool : void, S,

« If e, evaluates to Bool(false) then the loop
terminates immediately
- With the side-effects from the evaluation of e,
- And with result value void

» The typing rules ensure that e, evaluates to
a boolean object

Operational Semantics of while (2)
so, E, S e, : Bool(true), S,
so, E,S;+e,:v, S,
so, E, S, I while e, loop e, pool : void, S;

so, E, S - while e, loop e, pool : void, S;

 Note the sequencing (S -+ S; = S, — S;)

» Note how looping is expressed

- Evaluation of “while ...” is expressed in terms of
the evaluation of itself in another state

» The result of evaluating e, is discarded
- Only the side-effect is preserved

Operational Semantics of let
Expressions (1)

so, E,Ste,;ivy S,
so,?,?Fe,:V, S,

so, E,Stletid: T+ e;ine,:v, S,

» What is the context in which e, must be
evaluated?
- Environment like E but with a new binding of id
to a fresh location |,
- Store like S, but with (., mapped to v,

Operational Semantics of let

Expressions (I1)
» We write .., = newloc(S) to say that |, is a
location that is not already used in S
- Think of newloc as the dynamic memory
allocation function
» The operational rule for let:
so, E,Ste, v, S,
l,ew = Newloc(S,)
50, E[lyew/id], Si[Vi/liewl F €51 V5, S,
so, E,Stletid: T+« e;ine,:v, S,

Operational Semantics of new

» Consider the expression new T

« Informal semantics

- Allocate new locations to hold the values for all

attributes of an object of class T
« Essentially, allocate a new object

- Initialize those locations with the default values
of attributes

- Evaluate the initializers and set the resulting
attribute values

- Return the newly allocated object

Default Values

 For each class A there is a default value
denoted by D,
- Dy = Int(0)
- Dpoo = Bool(false)
B Dstring = String(o) “")
- D, = void (for all others classes A)

More Notation

 For a class A we write
class(A)=(a;: Ty« e, .., a,: T, < €,)
where
- a; are the attributes (including inherited ones)

- T, are their declared types
- e, are the initializers

« This is the class map from PA4!

#29]
Operational Semantics of new
» Observation: new SELF_TYPE allocates an
object with the same dynamic type as self
T, = if T == SELF_TYPE and so = X(...) then X else T
class(Ty) = (a2, : T, +€y,.,a,: T, +—€,)
l; = newloc(S) fori=1,..,n
v =To(a;= ly,ga,=1,)
E'=[a;:l.,a,:1,]
S; = S[Dyy /13y Dyn/ 1]
v,E,S;F{a,«~ey.;a,«<e;}:v,S,
so,E,SF-newT:v,S,
#30]

10

Operational Semantics of new

» The first three lines allocate the object
» The rest of the lines initialize it
- By evaluating a sequence of assignments
« State in which the initializers are evaluated
- Self is the current object
- Only the attributes are in scope (same as in
typing)
- Starting value of attributes are the default ones

« Side-effects of initialization are preserved

Operational Semantics of
Method Dispatch

+» Consider the expression e,.f(ey,...,e,)

« Informal semantics:
- Evaluate the arguments in order e,,...,e,
- Evaluate e, to the target object
- Let X be the dynamic type of the target object
- Fetch from X the definition of f (with n args)

- Create n new locations and an environment that maps f’s
formal arguments to those locations

- Initialize the locations with the actual arguments
- Set self to the target object and evaluate f’s body

More Notation

 For a class A and a method f of A (possibly
inherited) we write:
imp(A, f) = (X, -y Xp» ebody)
where
- X; are the names of the formal arguments
- Epogy 1S the body of the method

e This is the imp map from PA4!

11

Operational Semantics of Dispatch
so, E,Ste, 1vy,S,
so, E,S;Fe, :v,,S
Tt z 2r=2 Evaluate arguments
so, E, S, te, iv,,S,
so, E, S, ke, : Vg Spi1 }Evaluate receiver object
Vo = X(a; = ly,.., @, =1,) }Find type and attribtues
imp(X, f) = (Xy/-s X €40ay) J Find formals and body
l; = newloc(S,,,) fori=1,.,n
E' = [x,:| gt lyay il]) New
= Xy 5 gy oeer X 8 Ly @ 5 lgpep@n B environment
Sn+2 = Snr1lVi/ LararVn/ lknl } New store
Vo, B, Spiz F €poay t V) Spis } Evaluate body

so, E, S+ e,.f(ey,..,e,) =V, S,.3

Operational Semantics of Dispatch

» The body of the method is invoked with
- E mapping formal arguments and self’s attributes

- S like the caller’s except with actual arguments
bound to the locations allocated for formals

» The notion of the activation frame is implicit
- New locations are allocated for actual arguments

» The semantics of static dispatch is similar
except the implementation of f is taken from
the specified class

Runtime Errors

Operational rules do not cover all cases
Consider for example the rule for dispatch:
so, E, S, ey :VeShia

YO = x(al = I1I~--l an = Im)
imp(X, f) = (Xy/.r Xps €pody)

so, E, St e,.f(ey,..,e,) 1V, S,,3

What happens if imp(X, f) is not defined?
Cannot happen in a well-typed program
(because of the Type Safety Theorem)

12

Runtime Errors

» There are some runtime errors that the type
checker does not try to prevent
- A dispatch on void
- Division by zero
- Substring out of range
- Heap overflow
« In such case the execution must abort
gracefully
- With an error message not with segfault

Conclusions

 Operational rules are very precise
- Nothing is left unspecified

 Operational rules contain a lot of details
- Read them carefully

» Most languages do not have a well specified
operational semantics

» When portability is important an operational
semantics becomes essential

- But not always using the exact notation we used

for Cool
#3381
Homework

» WA5 due this Today at 1pm

o PA4 due Friday March 30t (8 days)

» For Tuesday:

- Read Dataflow and Basic Block articles

#39]

13

