
1

#1

AspectAspect--Oriented ProgrammingOriented Programming

#2

One-Slide Summary

• Aspect-oriented programming (AOP) is a different
way to think about programming. It acknowledges
that crosscutting concerns come up in practice.

• AOP provides a way to maintain concerns
separately and specify integration rules to weave
them together.

• AOP is somewhat similar to event handling, where
the “events” are defined outside the code itself.

• AspectJ, a popular AOP system, is not itself a
complete programming language, but an adjunct to
Java.

#3

Programming paradigms
• Procedural (or imperative) programming

– Executing a set of commands in a given sequence
– Fortran, C, Cobol

• Functional programming
– Evaluating a function defined in terms of other functions
– Scheme, Lisp, ML, OCaml

• Logic programming
– Proving a theorem by finding values for the free variables
– Prolog

• Object-oriented programming (OOP)
– Organizing a set of objects, each with its own set of responsibilities
– Smalltalk, Java, Ruby, C++

• Aspect-oriented programming (AOP) =
– aka Aspect-Oriented Software Design (AOSD)
– Executing code whenever a program shows certain behaviors
– AspectJ (a Java extension), Aspect#, AspectC++, …
– Does not replace O-O programming, but rather complements it

2

#4

Why Learn Aspect-Oriented
Design?

• Pragmatics – Google stats 2006 → 2007
– “object-oriented” 24.0 → 54.6 million
– functional programming n/a → 30.9 million
– “aspect-oriented” OR “AOP” n/a → 30.4 million
– extreme programming n/a → 21.2 million
– “design patterns” 05.0 → 07.7 million
– “unreal tournament” 04.0 → 02.3 million
– “COBOL” 01.6 → 09.7 million

• It’s growing
– Just like OOP was years ago
– Especially in the Java / Eclipse / JBoss world

#5

Motivation By Allegory
• Imagine that you’re the ruler of a fantasy
monarchy

#6

Motivation By Allegory (2)
• You announce Wedding 1.0, but must
increase security

3

#7

Motivation By Allegory (3)
• You must make changes everywhere: close
the secret door

#8

Motivation By Allegory (4)
• … form a brute squad …

#9

Motivation By Allegory (5)
• … clear the Thieves’ Forest …

4

#10

Motivation By Allegory (6)
• … reduce the number of gate keys to 1 …

#11

Motivation By Allegory (7)
• … kill your rival …

#12

Motivation By Allegory (8)
• … double the guards at the gate …

5

#13

Motivation By Allegory (9)
• … secure the castle hallways …

#14

Motivation By Allegory (10)
• … even reduce the length of the Wedding
itself …

#15

Motivation By Allegory (11)
• … you’re swamped – you’re not happy!

6

#16

Motivation By Allegory (12)
• It’d be nice to separately advise: “Increase
Security”

#17

Motivation By Allegory (13)
• Then you’d be a happy monarch!

#18

The problem
• Some programming tasks cannot be neatly
encapsulated in objects, but must be scattered
throughout the code

• Examples:
– Logging (tracking program behavior to a file)
– Profiling (determining where a program spends its time)
– Tracing (determining what methods are called when)
– Session tracking, session expiration
– Special security management
– Error-checking or –handling

• The result is crosscutting code -- the necessary
code “cuts across” many different classes and
methods

7

#19

High-Level AOP Goals

• You want to maintain different
concerns separately
– Business logic here
– Tracing there
– Security somewhere else

• And yet somehow weave them together
to form one unified program that you
can run

• Specify rules for integrating them
together

#20

Lecture Goals

•What Is Aspect-Oriented
Programming

•When Should You Use It

•What Are Join Points

•What Are Pointcuts

•Where Can You Get More
Information

#21

Example – Adding Tracing
class Fraction {

int numerator;
int denominator;
...
public Fraction multiply(Fraction that) {

traceEnter("multiply", new Object[] {that});
Fraction result = new Fraction(

this.numerator * that.numerator,
this.denominator * that.denominator);

result = result.reduceToLowestTerms();
traceExit("multiply", result);
return result;

}
...

} • Now imagine similar code
in every method you might
want to trace

8

#22

Consequences of
Crosscutting code

• Redundant code
– Same fragment of code in many places

• Difficult to reason about
– Non-explicit structure
– The big picture of the tangling isn’t clear

• Difficult to change
– Have to find all the code involved...
– ...and be sure to change it consistently
– ...and be sure not to break it by accident

• Inefficient when crosscutting code is not
needed

#23

Popular AOP System: AspectJTM

• AspectJ is a small, well-integrated extension to
Java
– Based on the 1997 PhD thesis by Christina Lopes, D: A
Language Framework for Distributed Programming

– Widely championed by Gregor Kiczales et al.

• AspectJ “modularizes crosscutting concerns”
– That is, code for one aspect of the program (such as
tracing) is collected together in one place

• The AspectJ compiler is free and open source
• AspectJ works with JBuilder, Forté, Eclipse, JBoss,
probably others

• Good online writeup:
http://www.eclipse.org/aspectj/

#24

Terminology
• A join point is a well-defined point in the program
flow
– e.g., “when something calls foo()”

• A pointcut is a group of join points
– e.g., “every call to foo() in Bar.java”

• Advice is code that is executed at a pointcut
– e.g., “add in this Tracing code”

• Introduction modifies the members of a class and
the relationships between classes

• An aspect is a module for handling crosscutting
concerns
– Aspects are defined in terms of pointcuts, advice, and
introduction

– Aspects are reusable and inheritable

• We’ll cover each of these terms in greater detail

9

#25

Join points

• A join point is a well-defined point in the program
flow
– Used to specify how to integrate aspects of your
program

– We want to execute some code (“advice”) each time a
join point is reached

– We do not want to clutter up the code with explicit
indicators saying “This is a join point”

– AspectJ provides a syntax for indicating these join
points “from outside” the actual code (but this is
somewhat illusory)

• A join point is a point in the program flow “where
something happens”

• When a method is called
• When an exception is thrown
• When a variable is accessed (and more)

#26

Example Join Point Designators
• When a particular method body executes:

– execution(void Point.setX(int))

• When a method is called:
– call(void Point.setX(int))

• When an exception handler executes:
– handler(ArrayOutOfBoundsException)

• When the object currently executing (i.e. this) is
of type SomeType:
– this(SomeType)

• When the target object is of type SomeType
– target(SomeType)

• When the executing code belongs to class
MyClass
– within(MyClass)

#27

Example 1: Let’s Add Tracing
• A pointcut named move that chooses various
method calls:
– pointcut move():

call(void FigureElement.setXY(int,int)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int)) ||
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point));

• Advice (code) that runs before (or after) the
move pointcut:
– before(): move() {

System.out.println("About to move");
}

10

#28

Pointcut designator wildcards

• It is possible to use wildcards to declare
pointcuts:
– execution(* *(..))

• Chooses the execution of any method regardless of
return or parameter types

– call(* set(..))
• Chooses the call to any method named set regardless
of return or parameter type

• In case of overloading there may be more than one
such set method; this pointcut picks out calls to all
of them

#29

Pointcut Designators
Based on types

• You can select elements based on types. For
example,
– execution(int *())

• Chooses the execution of any method with no parameters that
returns an int

– call(* setY(long))
• Chooses the call to any setY method that takes a long as an
argument, regardless of return type or declaring type

– call(* Point.setY(int))
• Chooses the call to any of Point’s setY methods that take an int
as an argument, regardless of return type

– call(*.new(int, int))
• Chooses the call to any classes’ constructor, so long as it takes
exactly two ints as arguments

#30

Pointcut Designator Composition

• Pointcuts compose through the operations or
(“||”), and (“&&”) and not (“!”)

• Examples:
– target(Point) && call(int *())

• Chooses any call to an int method with no arguments on an
instance of Point, regardless of its name

– call(* *(..)) && (within(Line) || within(Point))
• Chooses any call to any method where the call is made from
the code in Point’s or Line’s type declaration

– within(Line) && execution(*.new(int))
• Chooses the execution of any constructor taking exactly one int
argument, so long as it is inside Line

– !this(Point) && call(int *(..))
• Chooses any method call to an int method when the executing
object is any type except Point

11

#31

A Faulty Mental Model

•Many imagine that AOP works like
this:

advice

advice

advice

basic code

basic code

Single Integrated

Program

Pointcut Rules

#32

A Problem

• Consider this Logger:

aspect Logger {

before(): call (* *.*(..)) {

System.out.println(“call to ” + thisJoinPoint);

}

}

• What might go wrong?

#33

A Better Mental Model

•This idea won’t lead you as far
astray:

concern

concern

concern

concern

Integration

Rules

composed

element

composed

element

composed

element

12

#34

Kinds of advice
• AspectJ has several kinds of advice; here are some
of them:
– Advice is just like your normal code

• (cf. AspectWerkz, AspectJ 5)

– Before advice runs as a join point is reached, before the
join point executes

– After advice on a join point runs after that join point
executes:
• after returning advice is executed after a method returns
normally

• after throwing advice is executed after a method returns by
throwing an exception

• after advice is executed after a method returns, regardless of
whether it returns normally or by throwing an exception

– Around advice on a join point runs as the join point is
reached, and has explicit control over whether the
program proceeds with the join point

#35

Example 2: With Parameters

• You can access the context of the join
point:

• pointcut setXY(FigureElement fe, int x, int y):
call(void FigureElement.setXY(int, int))
&& target(fe)
&& args(x, y);

• after(FigureElt fe, int x, int y)
returning: setXY(fe, x, y) {

println(fe + " moved to (" + x + ", " + y + ").");
}

#36

Example 2: With Parameters

• You can access the context of the join
point:

• pointcut setXY(FigureElement fe, int x, int y):
call(void FigureElement.setXY(int, int))
&& target(fe)
&& args(x, y);

• after(FigureElt fe, int x, int y)
returning: setXY(fe, x, y) {

println(fe + " moved to (" + x + ", " + y + ").");
}

How does this
relate to scope
and bound
variables?

13

#37

Introductions

• An introduction is a member of an
aspect, but it defines or modifies a
member of another type (class). With
introduction we can
– add methods to an existing class
– add fields to an existing class
– extend an existing class with another
– implement an interface in an existing class
– convert checked exceptions into
unchecked exceptions Why would we want to?

#38

Example introduction

• aspect CloneablePoint {

declare parents:
Point implements Cloneable;

declare soft:
CloneNotSupportedException:

execution(Object clone());

Object Point.clone()
{ return super.clone(); }

}

#39

AOP Challenges

• It’s not all wine and roses

• Debugging is a problem
– You debug the integrated (“weaved”) program –
but that doesn’t correspond to any particular
piece of source

– Like debugging C++ with macros and templates

• Aspects may depend on each other or
themselves
– This is difficult to reason about

– What integrated code is really being produced?

14

#40

Concluding remarks

• Aspect-oriented programming (AOP) is a new paradigm -- a
new way to think about programming

• It acknowledges that crosscutting concerns come up in
practice

• It provides a way to maintain concerns separately and
specify integration rules to weave them together

• AOP is somewhat similar to event handling, where the
“events” are defined outside the code itself

• AspectJ is not itself a complete programming language, but
an adjunct to Java

• AspectJ does not add new capabilities to what Java can do,
but adds new ways of modularizing the code

• Like all new technologies, AOP may--or may not--catch on
in a big way

#41

And They Lived Happily Ever After
• You may be skeptical. Any questions?

#42

Homework

• WA5 due this Thursday at 1pm

• PA4 due Friday March 30th (10 days)

• For Thursday:

– Read CRM Opsem

– Read Grant & Smith 2 – 2.2.2

– Optional Grant & Smith 2.3 – 2.4.4

