
1

#1

Cool Type CheckingCool Type Checking

Cool RunCool Run--Time OrganizationTime Organization

Run-Time Organization

#2

One-Slide Summary

• We will use SELF_TYPEC for “C or any

subtype of C”. It shows off the subtlety of

our type system and allows us to check

methods that return self objects.

• The lifetime of an activation of (i.e., a call

to) procedure P is all the steps to execute P

plus all the steps in procedures that P calls.

• Lifetime is a run-time (dynamic) notion; we

can model it with trees or stacks.

#3

Lecture Outline

• SELF_TYPE

• Object Lifetime

• Activation Records

• Stack Frames

2

#4

SELF_TYPE Dynamic Dispatch
• If the return type of the method is

SELF_TYPE then the type of the dispatch is

the type of the dispatch expression:

O,M,C ⊢⊢⊢⊢ e0.f(e1,…,en) : T0

O,M,C ⊢⊢⊢⊢ e0 : T0

…

O,M,C ⊢⊢⊢⊢ en : Tn

M(T0, f) = (T1’,…,Tn’, SELF_TYPE)

Ti ���� Ti’ 1 ���� i ���� n

A

B

C

D

#5

Where is SELF_TYPE

Illegal in COOL?
m(x : T) : T’ { … }

• Only T’ can be SELF_TYPE! Not T.

What could go wrong if T were SELF_TYPE?
class A { comp(x : SELF_TYPE) : Bool {…}; };

class B inherits A {

b() : int { … };

comp(y : SELF_TYPE) : Bool { … y.b() …}; };

…

let x : A ← new B in … x.comp(new A); …

…

#6

Summary of SELF_TYPE
• The extended ���� and lub operations can do a

lot of the work. Implement them to handle

SELF_TYPE

• SELF_TYPE can be used only in a few places.

Be sure it isn’t used anywhere else.

• A use of SELF_TYPE always refers to any

subtype in the current class

– The exception is the type checking of dispatch,

where SELF_TYPE as the return type in an

invoked method might have nothing to do with

the current enclosing class

3

#7

Why Cover SELF_TYPE ?

• SELF_TYPE is a research idea

– It adds more expressiveness to the type system

• SELF_TYPE is itself not so important

– except for the project

• Rather, SELF_TYPE is meant to illustrate that

type checking can be quite subtle

• In practice, there should be a balance

between the complexity of the type system

and its expressiveness

#8

Type Systems

• The rules in these lecture were Cool-specific

– Other languages have very different rules

– We’ll survey a few more type systems later

• General themes

– Type rules are defined on the structure of
expressions

– Types of variables are modeled by an environment

• Type systems tradeoff flexibility and safety

#9

Status

• We have covered the front-end phases

– Lexical analysis

– Parsing

– Semantic analysis

• Next are the back-end phases

– Optimization (optional)

– Code execution (or code generation)

• We’ll do code execution first . . .

4

#10

Run-time environments

• Before discussing code execution, we need

to understand what we are trying to execute

• There are a number of standard techniques

that are widely used for structuring

executable code

• Standard Way:

– Code

– Stack

– Heap

#11

Run-Time Organization Outline

• Management of run-time resources

• Correspondence between static (compile-

time) and dynamic (run-time) structures

– “Compile-time” == “Interpret-time”

• Storage organization

#12

Run-time Resources

• Execution of a program is initially under the

control of the operating system

• When a program is invoked:

– The OS allocates space for the program

– The code is loaded into part of the space

– The OS jumps to the entry point (i.e., “main”)

5

#13

Memory Layout

Low Address

High Address

Memory

Code

Other Space

#14

Notes

• Our pictures of machine organization have:

– Low address at the top

– High address at the bottom

– Lines delimiting areas for different kinds of data

• These pictures are simplifications

– e.g., not all memory need be contiguous

• In some textbooks lower addresses are at

bottom

#15

What is Other Space?

• Holds all data for the program

• Other Space = Data Space

• A compiler is responsible for:

– Generating code (that is run later)

– Orchestrating use of the data area

• An interpreter is responsible for:

– Executing the code directly (now)

– Orchestrating use of the (run-time) data

6

#16

Code Execution Goals

• Two goals:

– Correctness

– Speed

• Most

complications at

this stage come

from trying to be

fast as well as

correct

#17

Assumptions about Execution

1. Execution is sequential; control moves from

one point in a program to another in a well-

defined order

2. When a procedure is called, control

eventually returns to the point immediately

after the call

Do these assumptions always hold?

#18

Activations

• An invocation of procedure P is an activation

of P

• The lifetime of an activation of P is

– All the steps to execute P

– Including all the steps in procedures that P calls

7

#19

Lifetimes of Variables

• The lifetime of a variable x is the portion of

execution during which x is defined

• Note that

– Scope is a static concept

– Lifetime is a dynamic (run-time) concept

#20

Activation Trees

• Assumption (2) requires that when P calls Q,

then Q returns before P does

• Lifetimes of procedure activations are

properly nested

• Activation lifetimes can be depicted as a

tree

#21

Example

Class Main {

g() : Int { 1 };

f(): Int { g() };

main(): Int {{ g(); f(); }};

}
Main

fg

g

8

#22

Example 2

Class Main {

g() : Int { 1 };

f(x:Int): Int {

if x = 0 then g() else f(x - 1) fi

};

main(): Int {{ f(3); }};

}

What is the activation tree for this example?

#23

Notes

• The activation tree depends on run-time

behavior

• The activation tree may be different for

every program input

• Since activations are properly nested, a

stack can track currently active procedures

– This is the call stack

#24

Example

Class Main {

g() : Int { 1 };

f(): Int { g() };

main(): Int {{ g(); f(); }};

} Main Stack

Main

9

#25

Example

Class Main {

g() : Int { 1 };

f(): Int { g() };

main(): Int {{ g(); f(); }};

} Main

g

Stack

Main

g

#26

Example

Class Main {

g() : Int { 1 };

f(): Int { g() };

main(): Int {{ g(); f(); }};

} Main

g f

Stack

Main

f

#27

Example

Class Main {

g() : Int { 1 };

f(): Int { g() };

main(): Int {{ g(); f(); }};

} Main

fg

g

Stack

Main

f

g

10

#28

Revised Memory Layout

Low Address

High Address

Memory

Code

Stack

#29

Activation Records

• On many machines the stack starts at high-

addresses and grows towards lower

addresses

• The information needed to manage one

procedure activation is called an activation

record (AR) or frame

• If procedure F calls G, then G’s activation

record contains a mix of info about F and G.

#30

What is in G’s AR when F calls G?

• F is “suspended” until G completes, at which

point F resumes. G’s AR contains

information needed to resume execution of

F.

• G’s AR may also contain:

– Actual parameters to G (supplied by F)

– G’s return value (needed by F)

– Space for G’s local variables

11

#31

The Contents of a

Typical AR for G
• Space for G’s return value

• Actual parameters

• Pointer to the previous activation record

– The control link points to AR of F (caller of G)

• Machine status prior to calling G

– Local variables

– (Compiler: register & program counter contents)

• Other temporary values

#32

Example 2, Revisited

Class Main {

g() : Int { 1 };

f(x:Int):Int {

if x=0 then g() else f(x - 1) (**) fi

};

main(): Int {{f(3); (*) }};}

AR for f:
space for

result

argument

control link

return address

#33

Stack After Two Calls to f

main
result

3

(*)

f

result

2

(**)

f

Stack

12

#34

Notes

• main has no argument or local variables and

its result is “never” used; its AR is

uninteresting

• (*) and (**) are return addresses of the

invocations of f

– The return address is where execution resumes

after a procedure call finishes

• This is only one of many possible AR designs

– Would also work for C, Pascal, FORTRAN, etc.

#35

The Main Point

The interpreter must determine, at compile-

time, the layout of activation records and

execute code that correctly accesses

locations in the activation record

Thus, the AR layout and the interpreter

must be designed together!

#36

Discussion

• The advantage of placing the return value 1st in a

frame is that the caller can find it at a fixed offset

from its own frame

– The caller must write the return address there

• There is nothing magic about this organization

– Can rearrange order of frame elements

– Can divide caller/callee responsibilities differently

– An organization is better if it improves execution speed

or simplifies code generation

13

#37

Discussion (Cont.)

• Real compilers hold as much of the frame as

possible in registers

– Especially the method result and arguments

• Why?

#38

Globals

• All references to a global variable point to
the same object
– Can’t store a global in an activation record

• Is this true?

• Globals are assigned a fixed address once
– Variables with fixed address are “statically

allocated”

• Depending on the language, there may be
other statically allocated values

#39

Memory Layout with Static Data

Low Address

High Address

Memory

Code

Stack

Static Data

14

#40

Heap Storage

• A value that outlives the procedure that

creates it cannot be kept in the AR

method foo() { new Bar }

The Bar value must survive deallocation of foo’s

AR

• Languages with dynamically allocated data

use a heap to store dynamic data

#41

Notes

• The code area contains object code
– For most languages, fixed size and read only

• The static area contains data (not code) with
fixed addresses (e.g., global data)
– Fixed size, may be readable or writable

• The stack contains an AR for each currently
active procedure
– Each AR usually fixed size, contains locals

• Heap contains all other data
– In C, heap is managed by malloc and free

#42

Notes (Cont.)

• Both the heap and the stack grow

• Compilers must take care that they don’t

grow into each other

• Solution: start heap and stack at opposite

ends of memory and let the grow towards

each other

15

#43

Memory Layout with Heap

Low Address

High Address

Memory

Code

Heap

Static Data

Stack

#44

Why Am I Telling You This?

• You will have to implement “something like

a heap” and “something like a call stack” for

your interpreter.

• You can re-use the Python/Ruby/OCaml call

stack

– No explicit return address or control link

– Mutually-recursive procedures like “eval_exp”

and “eval_method” call each other

#45

Your Own Heap

• We must support code like:

– let x = new Counter(5) in

– let y = x in {

– x.increment(1);

– print(y.getCount()); // what does this print?

– }

• You’ll need an explicit heap (as described

today and also next week). A heap maps

addresses (integers) to values.

16

#46

Homework

• WA4 due this FRIDAY at Midnight

• PA4 due Friday March 30th (17 days)

• For Thursday: Read Chapters 7.3, 9-9.3

– Optional Stroustrup article

– This article is often loved by students

