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Cool Type CheckingCool Type Checking

Cool RunCool Run--Time OrganizationTime Organization

Run-Time Organization

#2

One-Slide Summary

• We will use SELF_TYPEC for “C or any 

subtype of C”. It shows off the subtlety of 

our type system and allows us to check 

methods that return self objects. 

• The lifetime of an activation of (i.e., a call 

to) procedure P is all the steps to execute P 

plus all the steps in procedures that P calls. 

• Lifetime is a run-time (dynamic) notion; we 

can model it with trees or stacks. 

#3

Lecture Outline

• SELF_TYPE

• Object Lifetime

• Activation Records

• Stack Frames
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#4

SELF_TYPE Dynamic Dispatch
• If the return type of the method is 

SELF_TYPE then the type of the dispatch is 

the type of the dispatch expression:

O,M,C ⊢⊢⊢⊢ e0.f(e1,…,en) : T0

O,M,C ⊢⊢⊢⊢ e0 : T0

…

O,M,C ⊢⊢⊢⊢ en : Tn

M(T0, f) = (T1’,…,Tn’, SELF_TYPE)

Ti ���� Ti’ 1 ���� i ���� n

A

B

C

D

#5

Where is SELF_TYPE

Illegal in COOL?
m(x : T) : T’ { … }

• Only T’ can be SELF_TYPE! Not T. 

What could go wrong if T were SELF_TYPE?
class A {  comp(x : SELF_TYPE) : Bool {…};  };

class B inherits A { 

b() : int { … }; 

comp(y : SELF_TYPE) : Bool { … y.b() …};  };

…

let x : A ← new B in  … x.comp(new A); …

…

#6

Summary of SELF_TYPE
• The extended ���� and lub operations can do a 

lot of the work. Implement them to handle 

SELF_TYPE

• SELF_TYPE can be used only in a few places. 

Be sure it isn’t used anywhere else.

• A use of SELF_TYPE always refers to any 

subtype in the current class

– The exception is the type checking of dispatch, 

where SELF_TYPE as the return type in an 

invoked method might have nothing to do with 

the current enclosing class
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#7

Why Cover SELF_TYPE ?

• SELF_TYPE is a research idea

– It adds more expressiveness to the type system

• SELF_TYPE is itself not so important

– except for the project

• Rather, SELF_TYPE is meant to illustrate that 

type checking can be quite subtle

• In practice, there should be a balance 

between the complexity of the type system 

and its expressiveness

#8

Type Systems

• The rules in these lecture were Cool-specific

– Other languages have very different rules

– We’ll survey a few more type systems later

• General themes

– Type rules are defined on the structure of 
expressions

– Types of variables are modeled by an environment

• Type systems tradeoff flexibility and safety

#9

Status

• We have covered the front-end phases

– Lexical analysis

– Parsing

– Semantic analysis

• Next are the back-end phases

– Optimization (optional)

– Code execution (or code generation)

• We’ll do code execution first . . .
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#10

Run-time environments

• Before discussing code execution, we need 

to understand what we are trying to execute

• There are a number of standard techniques 

that are widely used for structuring 

executable code

• Standard Way:

– Code

– Stack

– Heap

#11

Run-Time Organization Outline

• Management of run-time resources

• Correspondence between static (compile-

time) and dynamic (run-time) structures

– “Compile-time” == “Interpret-time”

• Storage organization

#12

Run-time Resources

• Execution of a program is initially under the 

control of the operating system

• When a program is invoked:

– The OS allocates space for the program

– The code is loaded into part of the space

– The OS jumps to the entry point (i.e., “main”)
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#13

Memory Layout

Low Address

High Address

Memory

Code

Other Space

#14

Notes

• Our pictures of machine organization have:

– Low address at the top

– High address at the bottom

– Lines delimiting areas for different kinds of data

• These pictures are simplifications

– e.g., not all memory need be contiguous

• In some textbooks lower addresses are at 

bottom

#15

What is Other Space?

• Holds all data for the program

• Other Space = Data Space

• A compiler is responsible for:

– Generating code (that is run later)

– Orchestrating use of the data area

• An interpreter is responsible for: 

– Executing the code directly (now)

– Orchestrating use of the (run-time) data 
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#16

Code Execution Goals

• Two goals:

– Correctness

– Speed

• Most 

complications at 

this stage come 

from trying to be 

fast as well as 

correct

#17

Assumptions about Execution

1. Execution is sequential; control moves from 

one point in a program to another in a well-

defined order

2. When a procedure is called, control 

eventually returns to the point immediately 

after the call

Do these assumptions always hold?

#18

Activations

• An invocation of procedure P is an activation

of P

• The lifetime of an activation of P is

– All the steps to execute P

– Including all the steps in procedures that P calls
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#19

Lifetimes of Variables

• The lifetime of a variable x is the portion of 

execution during which x is defined

• Note that

– Scope is a static concept

– Lifetime is a dynamic (run-time) concept

#20

Activation Trees

• Assumption (2) requires that when P calls Q, 

then Q returns before P does

• Lifetimes of procedure activations are 

properly nested

• Activation lifetimes can be depicted as a 

tree

#21

Example

Class Main {

g() : Int { 1 };

f():  Int { g() };

main(): Int {{ g(); f(); }};

}
Main

fg

g
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#22

Example 2

Class Main {

g() : Int { 1 };

f(x:Int):  Int { 

if x = 0 then g() else f(x - 1) fi

};

main(): Int {{ f(3); }};

}

What is the activation tree for this example?

#23

Notes

• The activation tree depends on run-time 

behavior

• The activation tree may be different for 

every program input

• Since activations are properly nested, a 

stack can track currently active procedures

– This is the call stack

#24

Example

Class Main {

g() : Int { 1 };

f():  Int { g() };

main(): Int {{ g(); f(); }};

} Main Stack

Main
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#25

Example

Class Main {

g() : Int { 1 };

f():  Int { g() };

main(): Int {{ g(); f(); }};

} Main

g

Stack

Main

g

#26

Example

Class Main {

g() : Int { 1 };

f():  Int { g() };

main(): Int {{ g(); f(); }};

} Main

g f

Stack

Main

f

#27

Example

Class Main {

g() : Int { 1 };

f():  Int { g() };

main(): Int {{ g(); f(); }};

} Main

fg

g

Stack

Main

f

g
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#28

Revised Memory Layout

Low Address

High Address

Memory

Code

Stack

#29

Activation Records

• On many machines the stack starts at high-

addresses and grows towards lower 

addresses

• The information needed to manage one 

procedure activation is called an activation 

record (AR) or frame

• If procedure F calls G, then G’s activation 

record contains a mix of info about F and G.

#30

What is in G’s AR when F calls G?

• F is “suspended” until G completes, at which 

point F resumes.  G’s AR contains 

information needed to resume execution of 

F.

• G’s AR may also contain:

– Actual parameters to G (supplied by F)

– G’s return value (needed by F)

– Space for G’s local variables
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#31

The Contents of a 

Typical AR for G
• Space for G’s return value

• Actual parameters

• Pointer to the previous activation record

– The control link points to AR of F (caller of G)

• Machine status prior to calling G

– Local variables

– (Compiler: register & program counter contents)

• Other temporary values

#32

Example 2, Revisited

Class Main {

g() : Int { 1 };

f(x:Int):Int {

if x=0 then g() else f(x - 1) (**) fi

};

main(): Int {{f(3); (*) }};}

AR for f:
space for 

result

argument

control link

return address

#33

Stack After Two Calls to f

main
result

3

(*)

f

result

2

(**)

f

Stack
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#34

Notes

• main has no argument or local variables and 

its result is “never” used; its AR is 

uninteresting

• (*) and (**) are return addresses of the 

invocations of f

– The return address is where execution resumes 

after a procedure call finishes

• This is only one of many possible AR designs

– Would also work for C, Pascal, FORTRAN, etc.

#35

The Main Point

The interpreter must determine, at compile-

time, the layout of activation records and 

execute code that correctly accesses 

locations in the activation record

Thus, the AR layout and the interpreter 

must be designed together!

#36

Discussion

• The advantage of placing the return value 1st in a 

frame is that the caller can find it at a fixed offset 

from its own frame

– The caller must write the return address there

• There is nothing magic about this organization

– Can rearrange order of frame elements

– Can divide caller/callee responsibilities differently

– An organization is better if it improves execution speed 

or simplifies code generation
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#37

Discussion (Cont.)

• Real compilers hold as much of the frame as 

possible in registers

– Especially the method result and arguments

• Why?

#38

Globals

• All references to a global variable point to 
the same object
– Can’t store a global in an activation record

• Is this true? 

• Globals are assigned a fixed address once
– Variables with fixed address are “statically 

allocated”

• Depending on the language, there may be 
other statically allocated values

#39

Memory Layout with Static Data

Low Address

High Address

Memory

Code

Stack

Static Data
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#40

Heap Storage

• A value that outlives the procedure that 

creates it cannot be kept in the AR

method foo() { new Bar }

The Bar value must survive deallocation of foo’s

AR

• Languages with dynamically allocated data 

use a heap to store dynamic data

#41

Notes

• The code area contains object code
– For most languages, fixed size and read only

• The static area contains data (not code) with 
fixed addresses (e.g., global data)
– Fixed size, may be readable or writable

• The stack contains an AR for each currently 
active procedure
– Each AR usually fixed size, contains locals

• Heap contains all other data
– In C, heap is managed by malloc and free

#42

Notes (Cont.)

• Both the heap and the stack grow

• Compilers must take care that they don’t 

grow into each other

• Solution: start heap and stack at opposite 

ends of memory and let the grow towards 

each other
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#43

Memory Layout with Heap

Low Address

High Address

Memory

Code

Heap

Static Data

Stack

#44

Why Am I Telling You This?

• You will have to implement “something like 

a heap” and “something like a call stack” for 

your interpreter. 

• You can re-use the Python/Ruby/OCaml call 

stack 

– No explicit return address or control link

– Mutually-recursive procedures like “eval_exp”

and “eval_method” call each other

#45

Your Own Heap

• We must support code like:

– let x = new Counter(5) in

– let y = x in { 

– x.increment(1);  

– print( y.getCount() ); // what does this print?

– }

• You’ll need an explicit heap (as described 

today and also next week). A heap maps 

addresses (integers) to values. 
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#46

Homework

• WA4 due this FRIDAY at Midnight

• PA4 due Friday March 30th (17 days)

• For Thursday: Read Chapters 7.3, 9-9.3

– Optional Stroustrup article

– This article is often loved by students


