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MoreMore

StaticStatic

SemanticsSemantics

#2

One-Slide Summary

• Typing rules formalize the semantics checks 
necessary to validate a program. Well-typed 
programs do not go wrong. 

• Subtyping relations (�) and least-upper-bounds
(lub) are powerful tools for type-checking dynamic 
dispatch. 

• We will use SELF_TYPEC for “C or any subtype of 
C”. It will show off the subtlety of type systems 
and allow us to check methods that return self 
objects. 

#3

Lecture Outline

• Typing Rules

• Dispatch Rules

– Static

– Dynamic

• SELF_TYPE
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#4

Assignment

What is this thing? What’s ⊢⊢⊢⊢? O? ����? 

[Assign]

O ⊢ ⊢ ⊢ ⊢ id ← e1 : T1

O(id) = T0
O ⊢ e1 : T1

T1 � T0

#5

Initialized Attributes

• Let OC(x) = T for all attributes x:T in class C

– OC represents the class-wide scope

• we “preload” the environment O with all attributes

• Attribute initialization is similar to let, 

except for the scope of names

[Attr-Init]
OC ⊢ ⊢ ⊢ ⊢ id : T0 ← e1 ;

OC(id) = T0
OC ⊢ e1 : T1

T1 � T0

#6

If-Then-Else

• Consider:

if e0 then e1 else e2 fi

• The result can be either e1 or e2

• The dynamic type is either e1’s or e2’s type

• The best we can do statically is the smallest 
supertype larger than the type of e1 and e2
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#7

If-Then-Else example

• Consider the class hierarchy

• … and the expression

if … then new A else new B fi

• Its type should allow for the dynamic type to 

be both A or B

– Smallest supertype is P

P

A B

#8

Least Upper Bounds

• Define: lub(X,Y) to be the least upper 
bound of X and Y. lub(X,Y) is Z if

– X ���� Z ∧∧∧∧ Y ���� Z

Z is an upper bound

– X ���� Z’ ∧∧∧∧ Y ���� Z’ ⇒⇒⇒⇒ Z ���� Z’

Z is least among upper bounds

• In Cool, the least upper bound of two types 

is their least common ancestor in the 
inheritance tree

#9

If-Then-Else Revisited

[If-Then-Else]

O ⊢ ⊢ ⊢ ⊢ if e0 then e1 else e2 fi : lub(T1, T2)

O ⊢⊢⊢⊢ e0 : Bool

O ⊢⊢⊢⊢ e1 : T1

O ⊢⊢⊢⊢ e2 : T2
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#10

Case

• The rule for case expressions takes a lub

over all branches

[Case]

O ⊢ ⊢ ⊢ ⊢ case e0 of x1:T1 ⇒⇒⇒⇒ e1; 

…; xn : Tn ⇒⇒⇒⇒ en; esac : lub(T1’,…,Tn’)

O ⊢⊢⊢⊢ e0 : T0
O[T1/x1] ⊢⊢⊢⊢ e1 : T1’

…

O[Tn/xn] ⊢⊢⊢⊢ en : Tn’

#11

Method Dispatch

• There is a problem with type checking 

method calls:

• We need information about the formal 

parameters and return type of f

[Dispatch]
O ⊢ ⊢ ⊢ ⊢ e0.f(e1,…,en) : ?

O ⊢⊢⊢⊢ e0 : T0
O ⊢⊢⊢⊢ e1 : T1

…

O ⊢⊢⊢⊢ en : Tn

#12

Notes on Dispatch

• In Cool, method and object identifiers live 

in different name spaces

– A method foo and an object foo can coexist in 

the same scope

• In the type rules, this is reflected by a 

separate mapping M for method signatures

M(C,f) = (T1,. . .Tn,Tn+1)

means in class C there is a method f

f(x1:T1,. . .,xn:Tn): Tn+1
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#13

An Extended Typing Judgment

• Now we have two environments: O and M

• The form of the typing judgment is

O, M ⊢ e : T

read as: “with the assumption that the object 

identifiers have types as given by O and the 

method identifiers have signatures as given 

by M, the expression e has type T”

#14

The Method Environment

• The method environment must be added to 

all rules

• In most cases, M is passed down but not 

actually used

– Example of a rule that does not use M:

– Only the dispatch rules uses M

[Add]
O, M ⊢ ⊢ ⊢ ⊢ e1 + e2 : Int

O, M ⊢⊢⊢⊢ e1 : T1

O, M ⊢⊢⊢⊢ e2 : T2

#15

The Dispatch Rule Revisited

[Dispatch]
O, M ⊢ ⊢ ⊢ ⊢ e0.f(e1,…,en) : Tn+1’

O, M ⊢⊢⊢⊢ e0 : T0
O, M ⊢⊢⊢⊢ e1 : T1

…

O, M ⊢⊢⊢⊢ en : Tn

M(T0, f) = (T1’,…,Tn’, Tn+1’)

Ti ���� Ti’ (for 1 ���� i ���� n)

Check actual
arguments

Look up formal
argument types Ti’

Check receiver
object e0
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#16

Static Dispatch

• Static dispatch is a variation on normal 

dispatch

• The method is found in the class explicitly 

named by the programmer (not via e0)

• The inferred type of the dispatch expression 

must conform to the specified type

#17

Static Dispatch (Cont.)

[StaticDispatch]
O, M ⊢ ⊢ ⊢ ⊢ e0@T.f(e1,…,en) : Tn+1’

O, M ⊢⊢⊢⊢ e0 : T0
O, M ⊢⊢⊢⊢ e1 : T1

…

O, M ⊢⊢⊢⊢ en : Tn
T0 ���� T

M(T, f) = (T1’,…,Tn’, Tn+1’)

Ti ���� Ti’ (for 1 ���� i ���� n)

#18

Handling the SELF_TYPE
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#19

Flexibility vs. Soundness

• Recall that type systems have two 

conflicting goals:

– Give flexibility to the programmer

– Prevent valid programs from “going wrong”

• Milner, 1981: “Well-typed programs do not go wrong”

• An active line of research is in the area of 

inventing more flexible type systems while 

preserving soundness

#20

Dynamic And Static Types

• The dynamic type of an object is ?

• The static type of an expression is ?

• You tell me!

#21

Dynamic And Static Types

• The dynamic type of an object is the class C

that is used in the “new C” expression that 

created it

– A run-time notion

– Even languages that are not statically typed have 

the notion of dynamic type

• The static type of an expression is a notation 

that captures all possible dynamic types the 

expression could take

– A compile-time notion
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#22

Soundness

Soundness theorem for the Cool type system:

∀∀∀∀ E.   dynamic_type(E)  ���� static_type(E)

Why is this Ok?

– All operations that can be used on an object of type C
can also be used on an object of type C’ � C

• Such as fetching the value of an attribute

• Or invoking a method on the object

– Subclasses can only add attributes or methods

– Methods can be redefined but with same type!

#23

An Example

class Count {

i : int ←←←← 0;
inc () : Count {

{
i ←←←← i + 1;

self;
}

};
};

• Class Count
incorporates a counter

• The inc method works 

for any subclass

• But there is disaster 
lurking in the type 
system

#24

Continuing Example

• Consider a subclass Stock of Count

class Stock inherits Count { 

name() : String { …}; -- name of item

};

class Main {

a : Stock ← (new Stock).inc (); 

… a.name() …

};

• And the following use of Stock:

Type checking 
error !
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#25

Post-Mortem

• (new Stock).inc() has dynamic type Stock

• So it is legitimate to write 

a : Stock ← (new Stock).inc ()

• But this is not well-typed

(new Stock).inc() has static type Count

• The type checker “loses” type information

• This makes inheriting inc useless

– So, we must redefine inc for each of the subclasses, 
with a specialized return type

#26

We’ve been pwned!

#27

I Need A Hero!

Type Systems
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#28

SELF_TYPE to the Rescue 

• We will extend the type system

• Insight:

– inc returns “self”

– Therefore the return value has same type as “self”

– Which could be Count or any subtype of Count !

– In the case of (new Stock).inc () the type is Stock

• We introduce the keyword SELF_TYPE to use for the 

return value of such functions

– We will also need to modify the typing rules to handle 

SELF_TYPE

#29

SELF_TYPE to the Rescue (2)

• SELF_TYPE allows the return type of inc to 
change when inc is inherited

• Modify the declaration of inc to read

inc() : SELF_TYPE { … }

• The type checker can now prove:

O, M  ⊢ (new Count).inc() : Count

O, M ⊢ (new Stock).inc() : Stock

• The program from before is now well typed

#30

SELF_TYPE: Binford Tools

• SELF_TYPE is not a dynamic type

• SELF_TYPE is a static type

• It helps the type checker to keep better 
track of types

• It enables the type checker to accept more 
correct programs

• In short, having SELF_TYPE increases the 
expressive power of the type system
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#31

SELF_TYPE and Dynamic Types 

(Example)
• What can be the dynamic type of the object 

returned by inc?

– Answer: whatever could be the type of “self”

class A inherits Count { } ;

class B inherits Count { } ;

class C inherits Count { } ;

– Answer: Count or any subtype of Count

(inc could be invoked through any of these classes)

#32

SELF_TYPE and Dynamic Types 

(Example)
• In general, if SELF_TYPE appears textually in 

the class C as the declared type of E then it 

denotes the dynamic type of the “self”

expression:

dynamic_type(E) = dynamic_type(self) � C

• Note: The meaning of SELF_TYPE depends on 

where it appears

– We write SELF_TYPEC to refer to an occurrence 

of SELF_TYPE in the body of C

#33

Type Checking

• This suggests a typing rule:

SELF_TYPEC ���� C                      

• This rule has an important consequence:

– In type checking it is always safe to replace 

SELF_TYPEC by C

• This suggests one way to handle SELF_TYPE :

– Replace all occurrences of SELF_TYPEC by C

• This would be correct but it is like not 

having SELF_TYPE at all (whoops!)
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#34

Operations on SELF_TYPE

• Recall the operations on types

– T1 � T2 T1 is a subtype of T2

– lub(T1,T2) the least-upper bound of T1 and T2

• We must extend these operations to handle 

SELF_TYPE

#35

Extending �

Let T and T’ be any types but SELF_TYPE

There are four cases in the definition of �

1. SELF_TYPEC � T if C � T

• SELF_TYPEC can be any subtype of C

• This includes C itself 

• Thus this is the most flexible rule we can allow

2. SELF_TYPEC � SELF_TYPEC
• SELF_TYPEC is the type of the “self” expression 

• In Cool we never need to compare SELF_TYPEs
coming from different classes

#36

Extending � (Cont.)

3. T � SELF_TYPEC always false

Note: SELF_TYPEC can denote any subtype of C. 

4. T � T’ (according to the rules from before)

Based on these rules we can extend lub …
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#37

Extending lub(T,T’)

Let T and T’ be any types but SELF_TYPE

Again there are four cases:

1. lub(SELF_TYPEC, SELF_TYPEC) = SELF_TYPEC

2. lub(SELF_TYPEC, T) = lub(C, T)

This is the best we can do because SELF_TYPEC � C

3. lub(T, SELF_TYPEC) = lub(C, T)

4. lub(T, T’) defined as before

#38

Where Can SELF_TYPE 

Appear in COOL? 
• The parser checks that SELF_TYPE appears 

only where a type is expected

• But SELF_TYPE is not allowed everywhere a 
type can appear:

1. class T inherits T’ {…}
• T, T’ cannot be SELF_TYPE

• Because SELF_TYPE is never a dynamic type

2. x : T
• T can be SELF_TYPE

• An attribute whose type is SELF_TYPEC

#39

Where Can SELF_TYPE 

Appear in COOL?
3. let x : T in E

• T can be SELF_TYPE

• x has type SELF_TYPEC

4. new T

• T can be SELF_TYPE

• Creates an object of the same type as self

5. m@T(E1,…,En)

• T cannot be SELF_TYPE
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#40

Typing Rules for SELF_TYPE

• Since occurrences of SELF_TYPE depend on 

the enclosing class we need to carry more 

context during type checking

• New form of the typing judgment:

O,M,C ⊢⊢⊢⊢ e : T

(An expression e occurring in the body of C

has static type T given a variable type 
environment O and method signatures M)

#41

Type Checking Rules

• The next step is to design type rules using 

SELF_TYPE for each language construct

• Most of the rules remain the same except 
that � and lub are the new ones

• Example: 

O,M,C ⊢ ⊢ ⊢ ⊢ id ←←←← e1 : T1

O(id) = T0
O,M,C ⊢⊢⊢⊢ e1 : T1

T1 ���� T0

#42

What’s Different?

• Recall the old rule for dispatch

O,M,C ⊢⊢⊢⊢ e0.f(e1,…,en) : Tn+1’

O,M,C ⊢⊢⊢⊢ e0 : T0

…

O,M,C ⊢⊢⊢⊢ en : Tn

M(T0, f) = (T1’,…,Tn’,Tn+1’)

Tn+1’ ≠≠≠≠ SELF_TYPE

Ti ���� Ti’ 1 ���� i ���� n
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#43

What’s Different?

• If the return type of the method is 

SELF_TYPE then the type of the dispatch is 

the type of the dispatch expression:

O,M,C ⊢⊢⊢⊢ e0.f(e1,…,en) : T0

O,M,C ⊢⊢⊢⊢ e0 : T0

…

O,M,C ⊢⊢⊢⊢ en : Tn

M(T0, f) = (T1’,…,Tn’, SELF_TYPE)

Ti ���� Ti’ 1 ���� i ���� n

#44

What’s Different?

• Note this rule handles the Stock example

• Formal parameters cannot be SELF_TYPE

• Actual arguments can be SELF_TYPE

– The extended � relation handles this case

• The type T0 of the dispatch expression could 

be SELF_TYPE

– Which class is used to find the declaration of f?

– Answer: it is safe to use the class where the 

dispatch appears

#45

Static Dispatch

• Recall the original rule for static dispatch

O,M,C ⊢⊢⊢⊢ e0@T.f(e1,…,en) : Tn+1’

O,M,C ⊢⊢⊢⊢ e0 : T0

…

O,M,C ⊢⊢⊢⊢ en : Tn

T0 ���� T

M(T, f) = (T1’,…,Tn’,Tn+1’)

Tn+1’ ≠≠≠≠ SELF_TYPE

Ti ���� Ti’ 1 ���� i ���� n
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#46

Static Dispatch
• If the return type of the method is 

SELF_TYPE we have:

O,M,C ⊢⊢⊢⊢ e0@T.f(e1,…,en) : T0

O,M,C ⊢⊢⊢⊢ e0 : T0

…

O,M,C ⊢⊢⊢⊢ en : Tn

T0 ���� T

M(T, f) = (T1’,…,Tn’,SELF_TYPE)

Ti ���� Ti’ 1 ���� i ���� n

#47

Static Dispatch

• Why is this rule correct?

• If we dispatch a method returning SELF_TYPE

in class T, don’t we get back a T?

• No. SELF_TYPE is the type of the self 

parameter, which may be a subtype of the 

class in which the method appears

• The static dispatch class cannot be 

SELF_TYPE

#48

New Rules

• There are two new rules using SELF_TYPE

• There are a number of other places where 

SELF_TYPE is used

O,M,C ⊢⊢⊢⊢ self : SELF_TYPEC

O,M,C ⊢⊢⊢⊢ new SELF_TYPE : SELF_TYPEC
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#49

Where is SELF_TYPE

Illegal in COOL?
m(x : T) : T’ { … }

• Only T’ can be SELF_TYPE !

What could go wrong if T were SELF_TYPE?
class A {  comp(x : SELF_TYPE) : Bool {…};  };

class B inherits A { 

b() : int { … }; 

comp(y : SELF_TYPE) : Bool { … y.b() …};  };

…

let x : A ← new B in  … x.comp(new A); …

…

#50

Summary of SELF_TYPE
• The extended � and lub operations can do a 

lot of the work. Implement them to handle 

SELF_TYPE

• SELF_TYPE can be used only in a few places. 

Be sure it isn’t used anywhere else.

• A use of SELF_TYPE always refers to any 

subtype in the current class

– The exception is the type checking of dispatch.  

– SELF_TYPE as the return type in an invoked 

method might have nothing to do with the 

current class

#51

Why Cover SELF_TYPE ?

• SELF_TYPE is a research idea

– It adds more expressiveness to the type system

• SELF_TYPE is itself not so important

– except for the project

• Rather, SELF_TYPE is meant to illustrate that 

type checking can be quite subtle

• In practice, there should be a balance 

between the complexity of the type system 

and its expressiveness



18

#52

Type Systems

• The rules in these lecture were Cool-specific

– Other languages have very different rules

– We’ll survey a few more type systems later

• General themes

– Type rules are defined on the structure of expressions

– Types of variables are modeled by an environment

• Types are a play between flexibility and safety

#53

Homework

• No WA due this week 

• No PA due this week 

• For Now: Happy Spring Break!

• For Tue Mar 13: Read Chapters 8.1-8.3

– Optional Grant & Smith


