New Lecture Style

» Response to suggestion: today | will pause
for five seconds at the end of every slide.

« Think about whether or not you like this.

« If | fail to pause at the end of a slide you
should jeer me with great gusto.

Passing Out Review Forms

"1 like you Harry — even when
your bead's on fire you don't complain,”

One-Slide Summary

» A type environment gives types for free
variables. You typecheck a let-body with an
environment that has been updated to
contain the new let-variable.

« If an object of type X could be used when
one of type Y is acceptable then we say X is
a subtype of Y, also written X <'Y.

« A type system is sound if V E.
dynamic_type(E) < static_type(E)

Lecture Outline

» Typing Rules

« Typing Environments
» “Let” Rules

« Subtyping

» Wrong Rules

Example: 1 + 2

F1:Int F2:Int
F1+2:Int

Soundness

* A type system is sound if
- Whenever Fe:T
- Then e evaluates to a value of type T

» We only want sound rules
- But some sound rules are better than others:

- (i is an integer)
i : Object

#7

Type Checking Proofs

» Type checking proves factse : T
- One type rule is used for each kind of expression

« In the type rule used for a node e

- The hypotheses are the proofs of types of e’s
subexpressions

- The conclusion is the proof of type of e itself

Rules for Constants

I false : Bool [Bool]

[String]

(s is astring
constant)

F s : String

#9

Rule for New

new T produces an object of type T
- Ignore SELF_TYPE for now . . .

_ [New]
FnewT: T

Two More Rules

e : Bool [Not]
F not e : Bool

e, : Bool
Fe,: T
F while e, loop e, pool : Object

[Loop]

Typing: Example
» Typing for while not false loop 1 + 2 * 3 pool
while loop pool : Object

not : Bool + :Int

I 2 ey

false : Bool 1:Int * +Int

2 : Int 3 Int

Typing Derivations

» The typing reasoning can be expressed as a

tree:
F2:Int F3:Int
I false : Bool F1:Int F2*3:Int

F not false : Bool F1+2*3:Int

 while not false loop 1 + 2 * 3 : Object
» The root of the tree is the whole
expression
» Each node is an instance of a typing rule
» Leaves are the rules with no hypotheses

A Problem

» What is the type of a variable reference?

[Var] (xisan
Fx:? identifier)

» The local, structural rule does not carry
enough information to give x a type.

A Solution: Put more

information in the rules!
A type environment gives types for free
variables

- A type environment is a mapping from
Object_ldentifiers to Types

- A variable is free in an expression if:

« The expression contains an occurrence of the variable
that refers to a declaration outside the expression

- in the expression “x”, the variable “x” is free
-in “let x : Intin x + y” only “y” is free
-in “x + let x : Int in x + y” both “x”, “y” are free

#15

Type Environments

Let O be a function from Object_Identifiers to
Types

The sentence O ke : T

is read: Under the assumption that variables
have the types given by O, it is provable that
the expression e has the type T

Modified Rules

The type environment is added to the earlier
rules:

_ [Inf]
OFi:Int (i is an integer)
OFe,:Int
OFe,:Int [Add]

OFe +e,:Int

New Rules

And we can write new rules:

[Var](O(x)=T)
OFx:T

Equivalently:

_ 0¥ =T (var]
OFx:T

Let

O[To/x]H ey : T, [Let-No-Init]
OFletx:Tyine,: T,

O[T,/x] means “O modified to map x to T, and
behaving as O on all other arguments”:
O[Ty/x] (x) =T,
O[Ty/x] (y) = O(y)

Let Example

« Consider the Cool expression
letx:Toin (lety:T,inE,) + (letx: T,inF, |)
(where E, , and F, , are some Cool expression
that contain occurrences of “x” and “y”)

 Scope
- of “y”isE, |
- of outer “x” is E,
- of inner “x” is F,
« This is captured precisely in the typing rule.

#20]
Let. Example.
¢5T O%Ie’rx:Toin‘ sint
ype env. \ \
Types OlTy/xIF + :int
vint

O[To/x]F lety: T, inj tint O[To/x]Flet x: T,in

N \

(O[To/xDIT/YIF E,, :int

|

(O[To/xJ)[Tz/x] F Fy, +int

Notes

» The type environment gives types to the free
identifiers in the current scope

» The type environment is passed down the
AST from the root towards the leaves

» Types are computed up the AST from the
leaves towards the root

22]
Let with Initialization
Now consider let with initialization:
OFey: T,
O[Ty/x] F e, :.T1 [Let-Tnit]
OFletx: Ty« eyine, : T,
This rule is weak. Why?
23]

Let with Initialization
 Consider the example:

class C inherits P { ... }
letx: P+ newCin..

» The previous let rule does not allow this
code

- We say that the rule is too weak or incomplete
#24]

Subtyping

o Define a relation X <Y on classes to say
that:

- An object of type X could be used when one of
type Y is acceptable, or equivalently

- X conforms with Y
- In Cool this means that X is a subclass of Y
e Define a relation < on classes
X < X
X <Y if X inherits from Y
X<ZifX<YandY<Z

Let With Initialization (Better)

OFey:T
T<LT,
O[Ty/x]1 e, : T, [Let-Init]

OFletx: Ty« ey ine, : T,

e Both rules for let are sound

» But more programs type check with this
new rule (it is more complete)

Type System Tug-of-War

» There is a tension between
- Flexible rules that do not constrain programming

- Restrictive rules that ensure safety of execution

Expressiveness
of Static Type Systems
« A static type system enables a compiler to
detect many common programming errors
» The cost is that some correct programs are
disallowed
- Some argue for dynamic type checking instead

- Others argue for more expressive static type
checking

» But more expressive type systems are also
more complex

Dynamic And Static Types

» The dynamic type of an object is the class C
that is used in the “new C” expression that
creates the object

- A run-time notion
- Even languages that are not statically typed have
the notion of dynamic type

» The static type of an expression is a notation
that captures all possible dynamic types the
expression could take

- A compile-time notion

Dynamic and Static Types. (Cont.)

« In early type systems the set of static types
correspond directly with the dynamic types

» Soundness theorem: for all expressions E
dynamic_type(E) = static_type(E)
(in all executions, E evaluates to values of the
type inferred by the compiler)

» This gets more complicated in advanced type
systems (e.g., Java, Cool)

10

Dynamic and Static Types in COOL

classA{ ..}
class B inherits A {...}
class Main { Here, x’s value has

. / .
x has static — AX < new A; dynamic type A
wpef X < new B; «—_ Here, x’s value has
dynamic type B

« A variable of static type A can hold values of
static type B, if B < A

#31]

Dynamic and Static Types

Soundness theorem for the Cool type system:
V E. dynamic_type(E) < static_type(E)

Why is this Ok?
- For E, compiler uses static_type(E)
- All operations that can be used on an object of type
C can also be used on an object of type C’ < C
« Such as fetching the value of an attribute
« Or invoking a method on the object
- Subclasses can only add attributes or methods

- Methods can be redefined but with the same types!

Subtyping Example

« Consider the following Cool class definitions

ClassA{a():int{0};}
Class B inherits A{ b() : int {1} 3}

e An instance of B has methods “a” and “b”
e An instance of A has method “a”

- A type error occurs if we try to invoke method
“b” on an instance of A

Example of Wrong Let Rule (1)

» Now consider a hypothetical wrong let rule:
OkFey:T T<T, Ole;:T,

OFletx: Ty« eyine, : T,

e How is it different from the correct rule?

+ The following good program does not typecheck
let x : Int + Oinx + 1
+ Why?

Example of Wrong Let Rule (2)

» Now consider a hypothetical wrong let rule:
OFey: T To<T O[Ty/x]Fe,: T,

OFletx: Ty« eyine, : T,

» How is it different from the correct rule?
* The following bad program is well typed

let x : B < new A in x.b()
+ Why is this program bad?

Example of Wrong Let Rule (3)

» Now consider a hypothetical wrong let rule:
OkLey: T TLT, O[T/x]Fe;:T,

OFletx: Ty« eyine, : T,

» How is it different from the correct rule?

+ The following good program is not well typed
let x: A« newBin{. x < new A; x.a(); }

+ Why is this program not well typed?

12

Typing Rule Notation

« The typing rules use very concise notation
» They are very carefully constructed

« Virtually any change in a rule either:
- Makes the type system unsound
(bad programs are accepted as well typed)
- Or, makes the type system less usable (incomplete)
(good programs are rejected)

» But some good programs will be rejected anyway
- The notion of a good program is undecidable

Assignment

More uses of subtyping:

0(id) = T,
OFe : T,
T, <T, [Assign]
OFid<« e, : T,

Initialized Attributes

e Let O.(x) =T for all attributes x:T in class C
- O represents the class-wide scope

 Attribute initialization is similar to let,
except for the scope of nhames
Oc(id) =T,
Octe T,
T, <T,
Ockid: Ty eq;

[Attr-Init]

13

If-Then-Else

« Consider:
if e, then e, else e, fi

» The result can be either e, or e,
» The dynamic type is either e,’s or e,’s type

» The best we can do statically is the smallest
supertype larger than the type of e, and e,

#40

If-Then-Else example
« Consider the class h:’)erarchy
£ e
» ... and the expression

if ... then new A else new B fi

« Its type should allow for the dynamic type to
be both A or B

- Smallest supertype is P

Least Upper Bounds

 Define: lub(X,Y) to be the least upper
bound of X and Y. lub(X,Y) is Z if
-X<ZIAYLLZ
Z is an upper bound
-X<Z'ANYLZT =ZILT7T
Z is least among upper bounds

« In Cool, the least upper bound of two types
is their least common ancestor in the
inheritance tree

14

If-Then-Else Revisited

O} e, : Bool
OkFe T,
Oke,: T,

O Fif g, then e, else e, fi : lub(T,, T,)
[If-Then-Else]

Case

» The rule for case expressions takes a lub
over all branches

Okey:T,
O[T,/x]Fe,: T/

[Case]

Oo[T./x,]Fe,: T
O case e, of x,:T; = ey;
w3 X, T, = e,; esac : lub(T’,...,T.)

Next Time (Post-Midterm)

» Type checking method dispatch

» Type checking with SELF_TYPE in COOL

15

Homework

» Today: WA3 due

 Friday: PA3 due
- Parsing!

o Tuesday Feb 27 - Midterm 1 in Class
- 9:35-10:40

- One page of notes (front and back) hand-

written by you
o Next Thursday: Read Chapter 7.2

16

