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Introduction To ParsingIntroduction To Parsing

#2

Reading Quiz

• What does “recursive descent” mean? 

• Name a “truth that might hurt”.

• Name a “peril of JavaSchools”.

#3

Outline

• Formal languages

• Parser overview

• Context-free grammars (CFGs)

• Derivations

• Ambiguity
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#4

In One Slide

• A parser takes a sequence of tokens as 
input. If the input is valid, it produces a 

parse tree (or derivation). 

• Context-free grammars are a notation for 
specifying formal languages. They contain 

terminals, non-terminals and productions 

(aka rewrite rules). 

#5

Formal Languages

• Formal languages are very important in CS

– Especially in programming languages

• Regular languages

– The “weakest” formal languages widely used

– Many applications (e.g., virus scanning)

• Today we study context-free languages

– A “stronger” type of formal language

#6

Limitations of Regular Languages

• Intuition: A finite automaton that runs long 
enough must repeat states
– Pigeonhole Principle: imagine 20 states and 300 
transitions

• A finite automaton can’t remember how 
often it has visited a particular state

– Only enough memory to store in which state it is  

– Cannot count, except up to a finite limit

• Language of balanced parentheses is not 
regular: { (n )n | n > 0}
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#7

The Functionality of the Parser

• Input: sequence of tokens from lexer

– e.g., the .cl-lex files you make in PA2

• Output: parse tree of the program

– Also called an abstract syntax tree. 

• Output: error if the input is not valid. 

– e.g., “parse error on line 3”

#8

Example

• Cool program text

if x = y then 1 else 2 fi

• Parser input

IF  ID  =  ID THEN  INT  ELSE  INT  FI

• Parser output IF-THEN-ELSE

=

ID ID

INTINT

#9

Comparison with Lexical Analysis

Parse treeSequence of 
tokens

Parser

Sequence of 

tokens

Sequence of 

characters

Lexer

OutputInputPhase
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#10

The Role of the Parser

• Not all sequences of tokens are programs

– then x * / + 3 while x ; y z then

• The parser must distinguish between valid 
and invalid sequences of tokens

• We need

– A language to describe valid sequences of tokens

– A method (an algorithm) for distinguishing valid 

from invalid sequences of tokens

#11

Programming Language Structure

• Programming languages have recursive structure

• Consider the language of arithmetic expressions 

with integers, +, *, and ( )

• An expression is either:

– an integer

– an expression followed by “+” followed by expression

– an expression followed by “*” followed by expression

– a ‘(‘ followed by an expression followed by ‘)’

• int ,  int + int ,  ( int + int) * int are expressions

#12

Notation for Programming 

Languages
• An alternative notation:

E → int

E → E + E

E → E * E

E → ( E )

• We can view these rules as rewrite rules
– We start with E and replace occurrences of E 
with some right-hand side

E → E * E → ( E ) * E → ( E + E ) * E

→ …→ (int + int) * int
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#13

Observation

• All arithmetic expressions can be obtained 

by a sequence of replacements

• Any sequence of replacements forms a valid 

arithmetic expression

• This means that we cannot obtain

( int ) ) ) 

by any sequence of replacements. Why? 

• This notation is a context free grammar

#14

Context Free Grammars
• A context-free grammar consists of

– A set of non-terminals N

• Written in uppercase in these notes

– A set of terminals T

• Lowercase or punctuation in these notes

– A start symbol S (a non-terminal)

– A set of productions (rewrite rules)

• Assuming E ∈∈∈∈ N

E →→→→ Ε , or         

E →→→→ Y1 Y2 ... Yn where   Yi ∈ N ∪∪∪∪ T

#15

Examples of CFGs

Simple arithmetic expressions:

E →→→→ int

E →→→→ E + E

E →→→→ E * E

E →→→→ ( E )

– One non-terminal: E

– Several terminals: int + * ( )

• Called terminals because they are never replaced

– By convention the non-terminal for the first 

production is the start symbol
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#16

The Language of a CFG

Read productions as replacement rules:

X →→→→ Y1 ... Yn
Means X can be replaced by Y1 ... Yn

X →→→→ ε

Means X can be erased 

(replaced with empty string)

#17

Key Idea

To construct a valid sequence of terminals:

• Begin with a string consisting of the start 

symbol “S”

• Replace any non-terminal X in the string by 

a right-hand side of some production 

X → Y1 … Yn

3. Repeat (2) until there are only terminals in 

the string

#18

The Language of a CFG (Cont.)

More formally, write   

X1 … Xi-1 Xi Xi+1… Xn

→→→→

X1 … Xi-1 Y1 … Ym Xi+1 … Xn

if there is a production

Xi →→→→ Y1 … Ym



7

#19

The Language of a CFG (Cont.)

Write

X1 … Xn →→→→
* Y1 … Ym

if

X1 … Xn →→→→ … →→→→ … →→→→ Y1 … Ym

in 0 or more steps

#20

The Language of a CFG

Let G be a context-free grammar with start 

symbol S. Then the language of G is:

L(G) = { a1 … an | S →→→→
* a1 … an and 

every ai is a terminal }

L(G) is a set of strings over the alphabet of 

terminals.

#21

Examples:

• S →→→→ 0 also written as S →→→→ 0 | 1

S →→→→ 1

Generates the language { “0”, “1” }

• What about S →→→→ 1 A 

A →→→→ 0 | 1

• What about S →→→→ 1 B 

B →→→→ 0 | 1 B

• What about S →→→→ εεεε | ( S )
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#22

Arithmetic Example

Simple arithmetic expressions:

Some elements of the language:

E E+E | E E | (E) | id→ ∗

id id + id

(id) id  id

(id)  id id  (id)

∗

∗ ∗

#23

Cool Example

A fragment of COOL:

EXPR if EXPR then EXPR else EXPR fi

| while EXPR loop EXPR pool

| id

→

#24

Cool Example (Cont.)

Some elements of the language

id

if id then id else id fi

while id loop id pool

if while id loop id pool then id else id

if if id then id else id fi then id else id fi
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#25

Notes

The idea of a CFG is a big step.  But:

• Membership in a language is “yes” or “no”
– we also need a parse tree of the input

• We must handle errors gracefully

• We need an implementation of CFGs
– bison, yacc, ocamlyacc, ply, etc.

#26

More Notes

• Form of the grammar is important

– Many grammars generate the same languages

• Give me an example.  

– Automatic tools are sensitive to the grammar

– Note: Tools for regular languages (e.g., flex) are 

also sensitive to the form of the regular 

expression, but this is rarely a problem in 

practice

#27

Derivations and Parse Trees

A derivation is a sequence of productions

S → … → …

A derivation can be drawn as a tree

– Start symbol is the tree’s root

– For a production X → Y1 … Yn add children  Y1, 

…, Yn to node X
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#28

Derivation Example

• Grammar

• String

• We’re going to build a derivation

E E+E | E E | (E) | id→ ∗

id  id + id∗

#29

Derivation Example (Cont.)

E

E+E

E E+E

id E + E

id id + E

id id + id

→

→ ∗

→ ∗

→ ∗

→ ∗

Thus 
E →* id * id + id

#30

Derivation in Detail (1)

E

E
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#31

Derivation in Detail (2)

E

E+E→

E

E E+

#32

Derivation in Detail (3)

E E

E

E+E

E +→ ∗

→

E

E

E E

E+

*

#33

Derivation in Detail (4)

E

E+E

E E+E

id E + E→ ∗

→

→ ∗

E

E

E E

E+

*

id



12

#34

Derivation in Detail (5)

E

E+E

E E+E

id E + 

id id + 

E

E→ ∗

→

→ ∗

→ ∗

E

E

E E

E+

*

idid

#35

Derivation in Detail (6)

E

E+E

E E+E

id E + E

id id + E

id id + id

→

→ ∗

→ ∗

→

→ ∗

∗

E

E

E E

E+

id*

idid

#36

Notes on Derivations

• A parse tree has

– Terminals at the leaves

– Non-terminals at the interior nodes

• A left-to-right traversal of the leaves is the 

original input

• The parse tree shows the association of 

operations, the input string does not!
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#37

Left-most and Right-most 

Derivations
• The example is a left-

most derivation

– At each step, replace 

the left-most non-

terminal

• There is an equivalent 

notion of a right-most 
derivation

E

E+E

E+id

E E + id

E id + id

id id + id

→

→

→ ∗

→ ∗

→ ∗

#38

Right-most Derivation in Detail (1)

E

E

#39

Right-most Derivation in Detail (2)

E

E+E→

E

E E+
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#40

Right-most Derivation in Detail (3)

id

E

E+E

E+→

→

E

E E+

id

#41

Right-most Derivation in Detail (4)

E

E+E

E+id

E E + id

→

∗

→

→

E

E

E E

E+

id*

#42

Right-most Derivation in Detail (5)

E

E+E

E+id

E E 

E

+ id

id + id

→

→

→

∗

∗

→

E

E

E E

E+

id*

id
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#43

Right-most Derivation in Detail (6)

E

E+E

E+id

E E + id

E id + id

id id + id→ ∗

→

→

→ ∗

→ ∗

E

E

E E

E+

id*

idid

#44

Derivations and Parse Trees

• Note that for each parse tree there is a left-

most and a right-most derivation

• The difference is the order in which 

branches are added

• We will start with a parsing technique that 

yields left-most derivations 

– Later we’ll move on to right-most derivations.

#45

Summary of Derivations

• We are not just interested in whether              

s ∈∈∈∈ L(G)

– We need a parse tree for s

• A derivation defines a parse tree

– But one parse tree may have many derivations

• Left-most and right-most derivations are 

important in parser implementation
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#46

Review

• A parser consumes a sequence of tokens s

and produces a parse tree

• Issues:

– How do we recognize that s ∈∈∈∈ L(G) ?

– A parse tree of s describes how s ∈ L(G) 

– Ambiguity: more than one parse tree 
(interpretation) for some string s

– Error: no parse tree for some string s

– How do we construct the parse tree?

#47

Ambiguity

• Grammar

E →→→→ E + E | E * E |  ( E ) | int

• Strings

int + int + int

int * int + int

#48

Ambiguity. Example

The string int + int + int has two parse trees

E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

+ is left-associative
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#49

Ambiguity. Example

The string int * int + int has two parse trees

E

E

E E

E*

int +

intint

E

E

E E

E+

int*

intint

* has higher precedence than +

#50

Ambiguity (Cont.)

• A grammar is ambiguous if it has more than 
one parse tree for some string

– Equivalently, there is more than one right-most 

or left-most derivation for some string

• Ambiguity is bad

– Leaves meaning of some programs ill-defined

• Ambiguity is common in programming 

languages

– Arithmetic expressions

– IF-THEN-ELSE

#51

Dealing with Ambiguity

• There are several ways to handle ambiguity

• Most direct method is to rewrite the 

grammar unambiguously

E →→→→ E + T | T

T →→→→ T * int | int | ( E )

• Enforces precedence of * over +

• Enforces left-associativity of + and *
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#52

Ambiguity. Example

The int * int + int has ony one parse tree now

E

E

E E

E*

int +

intint

E

T

T int

T+

int

*

E

int

#53

Ambiguity: The Dangling Else

• Consider the grammar

E → if E then E

| if E then E else E

| OTHER

• This grammar is also ambiguous

#54

The Dangling Else: Example

• The expression

if E1 then if E2 then E3 else E4

has two parse trees
if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Typically we want the second form



19

#55

The Dangling Else: A Fix

• else matches the closest unmatched then

• We can describe this in the grammar (distinguish 

between matched and unmatched “then”)

E → MIF                   /* all then are matched */ 

|  UIF                   /* some then are unmatched */

MIF → if E then MIF else MIF    

|   OTHER

UIF → if E then E

|   if E then MIF else UIF  

• Describes the same set of strings

#56

The Dangling Else: Example 

Revisited
• The expression if E1 then if E2 then E3 else E4

if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Not valid because the 

then expression is not a 

MIF

• A valid parse tree 

(for a UIF)

#57

Ambiguity

• No general techniques for handling ambiguity

• Impossible to convert automatically an 

ambiguous grammar to an unambiguous one

• Used with care, ambiguity can simplify the 

grammar

– Sometimes allows more natural definitions

– We need disambiguation mechanisms
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#58

Precedence and Associativity

Declarations
• Instead of rewriting the grammar

– Use the more natural (ambiguous) grammar

– Along with disambiguating declarations

• Most tools allow precedence and 
associativity declarations to disambiguate 
grammars

• Examples …

#59

Associativity Declarations

• Consider the grammar            E → E + E | int

• Ambiguous: two parse trees of int + int + int
E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

• Left-associativity declaration: %left  +

#60

Precedence Declarations

• Consider the grammar  E → E + E | E  * E | 
int

– And the string int + int * int
E

E

E E

E+

int *

intint

E

E

E E

E*

int+

intint

• Precedence declarations: %left  +

%left  *
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#61

Review

• We can specify language syntax using CFG

• A parser will answer whether s ∈ L(G)

• … and will build a parse tree

• … and pass on to the rest of the compiler

• Next episode:

– How do we answer s ∈ L(G) and build a parse 

tree?

#62

Homework

• Thursday: WA1 (written homework) due
– You must work alone.

– Write or print out your answers. 

– Turn in before class Thrusday or in drop-box.

• Thursday: Chapters 2.4 – 2.4.1
– 1 page in book, 3 pages on CD

• Friday: PA2 (Lexer) due
– You may work in pairs.


