
1

#1

Lexical AnalysisLexical Analysis

Finite AutomataFinite Automata

(Part 1 of 2)(Part 1 of 2)

#2

Cunning Plan

• Informal Sketch of Lexical Analysis

– Identifies tokens from input string

– lexer : (char list) → (token list)

• Issues in Lexical Analysis

– Lookahead

– Ambiguity

• Specifying Lexers

– Regular Expressions

– Examples
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One-Slide Summary

• Lexical analysis turns a stream of characters 

into a stream of tokens. 

• Regular expressions are a way to specify sets 

of strings. We use them to describe tokens. 
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Recall: The Structure of a 

Compiler or Interpreter

Source Tokens

Interm.
Language

Lexical
analysis

Parsing

Code
Gen.

Machine
Code

Today we start

Optimization

Run It! Interpreter

Only!

Compiler

Only!
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Lexical Analysis

• What do we want to do?  Example:
if (i == j)

z = 0;

else
z = 1;

• The input is just a sequence of characters:
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• Goal: Partition input string into substrings
– And classify them according to their role

#6

What’s a Token?

• Output of lexical analysis is a list of tokens 

• A token is a syntactic category

– In English:

noun, verb, adjective, …

– In a programming language:

Identifier, Integer, Keyword, Whitespace, …

• Parser relies on the token distinctions: 

– e.g., identifiers are treated differently than keywords
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Tokens

• Tokens correspond to sets of strings.

• Identifier: strings of letters or digits, 

starting with a letter

• Integer: a non-empty string of digits

• Keyword: “else” or “if” or “begin” or …

• Whitespace: a non-empty sequence of 

blanks, newlines, and tabs

• OpenPar: a left-parenthesis

#8

Lexical Analyzer: Implementation

• An implementation must do two things:

1. Recognize substrings corresponding to 

tokens

2. Return the value or lexeme of the token

– The lexeme is the substring

#9

Example

• Recall:

\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• Token-lexeme pairs returned by the lexer:

– (Whitespace, “\t”)

– (Keyword, “if”)

– (OpenPar, “(“) 

– (Identifier, “i”)

– (Relation, “==”)

– (Identifier, “j”)

– …
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Lexical Analyzer: Implementation

• The lexer usually discards “uninteresting”

tokens that don’t contribute to parsing.

• Examples: Whitespace, Comments

• Question: What happens if we remove all 

whitespace and all comments prior to lexing?

#11

Lookahead

• Two important points:

1. The goal is to partition the string.  This is 

implemented by reading left-to-right, 

recognizing one token at a time

2. “Lookahead” may be required to decide where 

one token ends and the next token begins

– Even our simple example has lookahead issues

i vs. if

= vs. ==

#12

Next We Need

• A way to describe the lexemes of each token

• A way to resolve ambiguities

– Is if two variables i and f?

– Is == two equal signs =  =?
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Regular Languages

• There are several formalisms for specifying 

tokens

• Regular languages are the most popular

– Simple and useful theory

– Easy to understand

– Efficient implementations

#14

Languages

Def. Let ΣΣΣΣ be a set of characters. A 

language over ΣΣΣΣ is a set of strings of 

characters drawn from ΣΣΣΣ

(Σ is called the alphabet)

#15

Examples of Languages

• Alphabet = English 

characters

• Language = English 

sentences

• Not every string on 

English characters is an 

English sentence

• Alphabet = ASCII

• Language = C programs

• Note: ASCII character 

set is different from 

English character set
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Notation

• Languages are sets of strings

• Need some notation for specifying which sets 

we want

• For lexical analysis we care about regular 

languages, which can be described using 

regular expressions.

#17

Regular Expressions 

and Regular Languages
• Each regular expression is a notation for a 

regular language (a set of words)

– You’ll see the exact notation in a minute!

• If A is a regular expression then we write 

L(A) to refer to the language denoted by A

#18

Atomic Regular Expressions

• Single character: ‘c’

L(‘c’) = { “c” }   (for any c ∈ Σ)

• Concatenation: AB (where A and B are reg. exp.)

L(AB) = { ab | a ∈ L(A) and b ∈ L(B) }

• Example: L(‘i’ ‘f’) = { “if” }

(we will abbreviate ‘i’ ‘f’ as ‘if’ )
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Compound Regular Expressions

• Union

L(A | B)  = { s | s ∈ L(A) or s ∈ L(B) }

• Examples: 

‘if’ | ‘then‘ | ‘else’ = { “if”, “then”, “else”}

‘0’ | ‘1’ | … | ‘9’ = { “0”, “1”, …, “9” }

(note the … are just an abbreviation)

• Another example:

(‘0’ | ‘1’) (‘0’ | ‘1’) = { “00”, “01”, “10”, “11” }

#20

More Compound Regular 

Expressions
• So far we do not have a notation for infinite 

languages

• Iteration: A*

L(A*) = { “” } ∪ L(A) ∪ L(AA) ∪ L(AAA) ∪ …

• Examples:

‘0’* = { “”, “0”, “00”, “000”, …} 

‘1’ ‘0’* = { strings starting with 1, followed by 0’s }

• Epsilon: ε

L(ε) = { “” }

#21

Example: Keyword

– Keyword: “else” or “if” or “begin” or …

‘else’ | ‘if’ | ‘begin’ | …

(Recall: ‘else’ abbreviates ‘e’ ‘l’ ‘s’ ‘e’ )
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Example: Integers

Integer: a non-empty string of digits

digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’

| ‘8’ | ‘9’

number = digit digit*

Abbreviation: A+ = A A*

#23

Example: Identifier

Identifier: strings of letters or digits, 

starting with a letter

letter = ‘A’ | … | ‘Z’ | ‘a’ | … | ‘z’

identifier = letter (letter | digit) *

Is (letter* | digit*) the same ?

#24

Example: Whitespace

Whitespace: a non-empty sequence of blanks, 

newlines, and tabs

(‘ ‘ | ‘\t’ | ‘\n’)+

(Can you spot a small mistake?)
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Example: Phone Numbers

• Regular expressions are all around you!

• Consider (434) 924-1021

Σ = { 0, 1, 2, 3, …, 9, (, ), - }

area = digit3

exchange = digit3

phone = digit4

number = 

‘(‘ area ‘)’ exchange ‘-’ phone

#26

Example: Email Addresses

• Consider weimer@cs.virginia.edu

Σ = letters ∪ { ., @ }

name = letter+

address = name ‘@’ name (‘.’ name)*

#27

Summary

• Regular expressions describe many useful 
languages

• Next: Given a string s and a rexp R, is

• But a yes/no answer is not enough!

• Instead: partition the input into lexemes

• We will adapt regular expressions to this 
goal

( )?s L R∈
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Outline

• Specifying lexical structure using regular 

expressions

• Finite automata

– Deterministic Finite Automata (DFAs)

– Non-deterministic Finite Automata (NFAs)

• Implementation of regular expressions

RegExp ⇒⇒⇒⇒ NFA ⇒⇒⇒⇒ DFA ⇒⇒⇒⇒ Tables 

#29

Regular Expressions => 

Lexical Spec. (1)
1. Select a set of tokens

• Number, Keyword, Identifier, ...

2. Write a R.E. for the lexemes of each token

• Number = digit+

• Keyword = ‘if’ | ‘else’ | …

• Identifier = letter (letter | digit)*

• OpenPar = ‘(‘

• …

#30

Regular Expressions => 

Lexical Spec. (2)
3. Construct R, matching all lexemes for all 

tokens

R = Keyword | Identifier | Number | …

= R1 | R2 | R3 | …

Fact: If s ∈∈∈∈ L(R) then s is a lexeme

– Furthermore s ∈∈∈∈ L(Rj) for some “j”

– This “j” determines the token that is reported
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Regular Expressions => 

Lexical Spec. (3)
4. Let the input be x1…xn

(x1 ... xn are characters in the language alphabet Σ)

• For 1 ≤ i ≤ n check

x1…xi ∈∈∈∈ L(R) ?

5. It must be that

x1…xi ∈∈∈∈ L(Rj) for some i and j

6. Remove x1…xi from input and go to step (4.)

#32

Lexing Example

R = Whitespace | Integer | Identifier | ‘+’

• Parse “f +3  +g”

– “f” matches R, more precisely Identifier

– “+“ matches R, more precisely ‘+’

– …

– The token-lexeme pairs are

(Identifier, “f”), (‘+’, “+”), (Integer, “3”)

(Whitespace, “ “), (‘+’, “+”), (Identifier, “g”)

• We would like to drop the Whitespace tokens

– after matching Whitespace, continue matching 

#33

Ambiguities (1)

• There are ambiguities in the algorithm

• Example:

R = Whitespace | Integer | Identifier | ‘+’

• Parse “foo+3”

– “f” matches R, more precisely Identifier

– But also “fo” matches R, and “foo”, but not “foo+”

• How much input is used? What if

• x1…xi ∈ L(R) and also x1…xK ∈ L(R)

– “Maximal munch” rule: Pick the longest possible 

substring that matches R
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More Ambiguities

R = Whitespace | ‘new’ | Integer | Identifier

• Parse “new foo”

– “new” matches R, more precisely ‘new’

– but also Identifier, which one do we pick?

• In general, if x1…xi ∈ L(Rj) and x1…xi ∈

L(Rk)

– Rule: use rule listed first (j if j < k)

• We must list ‘new’ before Identifier

#35

Error Handling

R = Whitespace | Integer | Identifier | ‘+’

• Parse “=56”
– No prefix matches R: not “=“, nor “=5”, nor 

“=56”

• Problem: Can’t just get stuck …

• Solution: 

– Add a rule matching all “bad” strings; and put it 
last

• Lexer tools allow the writing of:
R = R1 | ... | Rn | Error

– Token Error matches if nothing else matches

#36

Summary

• Regular expressions provide a concise 

notation for string patterns

• Use in lexical analysis requires small 

extensions

– To resolve ambiguities

– To handle errors

• Good algorithms known (next)

– Require only single pass over the input

– Few operations per character (table lookup)
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Finite Automata

• Regular expressions = specification

• Finite automata = implementation

• A finite automaton consists of

– An input alphabet ΣΣΣΣ

– A set of states S

– A start state n

– A set of accepting states F ⊆⊆⊆⊆ S

– A set of transitions state →→→→input state

#38

Finite Automata

• Transition

s1 →→→→
a s2

• Is read

In state s1 on input “a” go to state  s2

• If end of input (or no transition possible)

– If in accepting state ⇒ accept

– Otherwise ⇒ reject 

#39

Finite Automata State Graphs

• A state

• The start state

• An accepting state

• A transition
a
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A Simple Example

• A finite automaton that accepts only “1”

• A finite automaton accepts a string if we can 

follow transitions labeled with the 

characters in the string from the start to 

some accepting state

1

#41

Another Simple Example

• A finite automaton accepting any number of 
1’s followed by a single 0

• Alphabet Σ = {0,1}

• Check that “1110” is accepted but “110…”
is not 

0

1

#42

And Another Example

• Alphabet Σ = {0,1}

• What language does this recognize?

0

1

0

1

0

1
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And Another Example

• Alphabet still Σ = { 0, 1 }

• The operation of the automaton is not 

completely defined by the input

– On input “11” the automaton could be in either 

state 

1

1

#44

Epsilon Moves

• Another kind of transition: ε-moves
ε

• Machine can move from state A to state B 

without reading input

A B

#45

Deterministic and 

Nondeterministic Automata
• Deterministic Finite Automata (DFA)

– One transition per input per state

– No ε-moves

• Nondeterministic Finite Automata (NFA)

– Can have multiple transitions for one input in a 

given state

– Can have ε-moves

• Finite automata have finite memory

– Need only to encode the current state
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Execution of Finite Automata

• A DFA can take only one path through the 

state graph

– Completely determined by input

• NFAs can choose

– Whether to make ε-moves

– Which of multiple transitions for a single input to 

take

#47

Acceptance of NFAs

• An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state

#48

NFA vs. DFA (1)

• NFAs and DFAs recognize the same set of 

languages (regular languages)

– They have the same expressive power

• DFAs are easier to implement

– There are no choices to consider
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NFA vs. DFA (2)

• For a given language the NFA can be simpler 

than the DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA

#50

Regular Expressions to Finite 

Automata
• High-level sketch

Regular

expressions

NFA

DFA

Lexical

Specification
Table-driven 

Implementation of DFA
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Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA

– Notation: NFA for rexp A        

A

• For ε
ε

• For input a
a
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Regular Expressions to NFA (2)

• For AB

A B
ε

• For A | B

A

B

ε

ε

ε

ε

#53

Regular Expressions to NFA (3)

• For A*

A
ε

ε

ε

#54

Example of RegExp -> NFA 

conversion
• Consider the regular expression

(1 | 0)*1

• The NFA is

ε

1
C E

0
D F

ε

ε

B

ε

ε

G

ε

ε

ε

A H
1

I J
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Next

Regular

expressions

NFA

DFA

Lexical

Specification
Table-driven 

Implementation of DFA

#56

NFA to DFA: The Trick

• Simulate the NFA

• Each state of DFA 

= a non-empty subset of states of the NFA

• Start state 

= the set of NFA states reachable through ε-moves 

from NFA start state

• Add a transition S →a S’ to DFA iff

– S’ is the set of NFA states reachable from the 

states in S after seeing the input a

• considering ε-moves as well

#57

NFA → DFA Example

1

0
1

ε ε

ε

ε

ε

ε

ε

ε

A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

1
0 1
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NFA → DFA: Remark

• An NFA may be in many states at any time

• How many different states?

• If there are N states, the NFA must be in 

some subset of those N states

• How many non-empty subsets are there?

– 2N - 1 = finitely many

#59

Implementation

• A DFA can be implemented by a 2D table T

– One dimension is “states”

– Other dimension is “input symbols”

– For every transition Si →
a Sk define T[i,a] = k

• DFA “execution”

– If in state Si and input a, read T[i,a] = k and skip 

to state Sk

– Very efficient

#60

Table Implementation of a DFA

S

T

U

0

1

0

1
0 1

UTU

UTT

UTS

10
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Implementation (Cont.)

• NFA → DFA conversion is at the heart of 

tools such as flex or ocamllex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed 

for space in the choice of NFA and DFA 

representations

#62

PA1: Lexical Analysis

• Correctness is job #1.

– And job #2 and #3!

• Tips on building large systems:

– Keep it simple

– Design systems that can be tested 

– Don’t optimize prematurely

– It is easier to modify a working system than to 

get a system working
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Homework

• Thursday: Chapter 2.4 – 2.4.1
– 13 CD – 15 CD on the web

• Friday: PA1 due

• Next Tuesday: Chapters 2.3 – 2.3.2

– Optional Wikipedia article


