
1

#1

History of Programming LanguagesHistory of Programming Languages

Functional ProgrammingFunctional Programming

#2

Cunning Plan

• Review and Administrivia

– Office Hours

• History Lesson

– Babbage to C#

• Functional Programming

– OCaml

– Types

– Pattern Matching

– Higher-Order Functions

#3

Gone In Sixty Seconds

• Imperative: change state, assignments

• Structured: if/block/routine control flow

• Object-Oriented: message passing,

inheritance

• Functional: functions are first-class citizens
that can be passed around or called

recursively. We can avoid changing state by

passing copies.

2

#4

Discussion Sections

• Structured Office Hours

– Wednesdays 4pm – 5pm in MEC 341

– Mondays 10am – 11am in OLS 011

• Pieter Office Hours

– Thursdays 3:30pm – 4:30pm in OLS 235

• Wes Office Hour

– Wednesday 2pm – 3pm in OLS 219

#5

Why Study History?

• Those who cannot remember George

Santayana are condemned to misquote him.

– Supernatural, 1999

#6

Why Study History?Why Study History?
•• Progress, far from consisting in change, Progress, far from consisting in change,
depends on retentiveness. depends on retentiveness. Those who cannot Those who cannot
remember the past are condemned to repeat remember the past are condemned to repeat
it.it.

–– George Santayana, George Santayana, Life of Reason: Life of Reason: Vol. IVol. I, Reason , Reason
and Common Senseand Common Sense, 1905, 1905--1906. 1906.

•• Through meticulous analysis of history I will Through meticulous analysis of history I will
find a way to make the people worship me. By find a way to make the people worship me. By
studying the conquerors of days gone by, studying the conquerors of days gone by, II’’ll ll
discover the mistakes that made them go discover the mistakes that made them go
awry.awry.

–– The Brain, The Brain, A Meticulous Analysis of HistoryA Meticulous Analysis of History, P031, P031

3

#7

Theory and Math

• 1822 – Babbage: Difference Engine
– PL = change the gears

• 1936 – Church & Kleene: Lambda Calculus
– PL = function is primary unit of computation

– Legacy = all of functional programming

• 1942 – ENIAC (first large electronic programmable)

– PL = preset switches, rewire system

• 1945 – John Von Neumann
– PL = subroutines you can jump to in any order

– Idea = branch based program IF/THEN, FOR

– Also = “libraries” = block of reused code

It would appear that we have reached the

limits of what it is possible to achieve with

computer technology, although one should

be careful with such statements; they tend

to sound pretty silly in five years.

- John Von Neumann, 1949

#8

#9

Firsts

• 1949 – Short Code (first PL for electronic devices)

– PL = you changes stmts to 0’s and 1’s by hand

• 1952 – Grace Hopper: A-0 compiler

– PL = 3 address assembly code for math probs

• 1954 – Backus: FORTRAN

– PL = declare variables, types (bool, int, real,

array), assignment statements, if-then-else, if-

based error checking, goto, computed goto, for-

loops, formatted I/O, optimization hints to

compiler, no procedures until 1958!

Nobody believed that I had a running compiler

and nobody would touch it. They told me

computers could only do arithmetic.

- Grace Hopper, 1952

4

#10

Branching Out

• 1958 – John McCarthy: LISP

– PL = basic datatype is the List, programs

themselves are lists, can self-modify, dynamic

allocation, garbage collection (!)

• 1959 – Grace Hopper: COBOL

– PL = designed for businesses, types (strings, text,

arrays, records), PICTURE clause (field

specification). No local vars, recursion, dynamic

allocation or structured programming.

The use of COBOL cripples the mind;

its teaching should, therefore, be

regarded as a criminal offense.

- Edsger Dijkstra, 1975

#11

Structure

• 1960 – ALGOL (de facto standard for 30 years)

– Formal grammar in Backus-Naur Form

– PL = bracketed begin/end, parameter passing,

recursive function calls

– Legacy = Pascal, C, C++, Java, C#, …

• 1970 – Niklaus Wirth: Pascal

– Takes best of Cobol, Fortran and Algol

– PL = pointers, switch/case, dynamic allocation

(new/dispose), enum, no dynamic arrays

– Easy Adoption = PCODE stack virtual machine

[ALGOL 60] is a language that is so far ahead of

its time, that it was not only an improvement

on its predecessors, but also on nearly all of it

successors.

- C. A. R. Hoare, 1973

#12

ParadigmsParadigms

•• 19691969--73 73 –– Dennis Ritchie: Dennis Ritchie: CC

–– Systems programming, minimalist, lowSystems programming, minimalist, low--level level

memory access, memory access, ““portableportable””, preprocessor, preprocessor

•• 1972 1972 –– Alan Kay: SmalltalkAlan Kay: Smalltalk

–– PL = objectPL = object--oriented, dynamically typed, oriented, dynamically typed,

reflective, message passing, inheritancereflective, message passing, inheritance

•• 1973 1973 –– Robin Milner: MLRobin Milner: ML

–– PL = functional, strong static typing, type PL = functional, strong static typing, type

inference, algebraic inference, algebraic datatypesdatatypes, pattern , pattern

matching, exception handlingmatching, exception handling

C is often described, with a mixture of fondness and

disdain varying according to the speaker, as "a

language that combines all the elegance and power

of assembly language with all the readability and

maintainability of assembly language.”

- MIT Jargon Dictionary

5

#13

Modern Era

•• 1983 1983 –– AdaAda US DOD, static type safeUS DOD, static type safe

•• 1983 1983 –– C++C++ classes, default classes, default argsargs, STL, STL

•• 1987 1987 –– Perl Perl dynamic scripting dynamic scripting langlang

•• 1990 1990 –– PythonPython interpinterp OO, +readabilityOO, +readability

•• 1991 1991 –– JavaJava portable OO portable OO langlang (for (for iTViTV))

•• 1993 1993 –– RubyRuby Perl + SmalltalkPerl + Smalltalk

•• 1996 1996 –– OCamlOCaml ML + C++ML + C++

•• 2000 2000 –– C#C# ““simplesimple”” Java + delegatesJava + delegates

I invented the term Object-Oriented,

and I did not have C++ in mind.

- Alan Kay

#14

Oh what a tangled web we weave,

When first we practise to deceive!

- Sir Walter Scott, 1771-1832

Functional
Object-

Oriented
Structured

Imperative

There are only two kinds of

programming languages: those people

always [complain] about and those

nobody uses.

- Bjarne Stroustrup

I fear the new OO systems may suffer the

fate of LISP, in that they can do many

things, but the complexity of the class

hierarchies may cause them to collapse

under their own weight.

- Bill Joy

Computer language design

is just like a stroll in the

park. Jurassic Park, that is.

- Larry Wall

#15

Let’s Get A Feel For It

• We’ll now see the same program in many of

these languages

• We’ll watch it evolve over time

• The program reads lines of integers from

standard input and prints the sum

• Think abou thow you would do this …

6

#16

FORTRAN FORTRAN ---- 19541954

#17

Smalltalk Smalltalk ---- 1972 1972

#18

ML ML ---- 19731973

7

#19

PASCAL PASCAL ---- 19701970

#20

C C ---- 1972 1972

#21

C++ C++ ---- 1983 1983

8

#22

Java Java ---- 19911991

#23

Ruby Ruby ---- 19951995

Q: Advertising (785 / 842)

•Identify the company associated

with two of the following four

advertising slogans or symbols.

– "Fill it to the rim."

– "I bet you can't eat just one."

– "Snap, Crackle, Pop"

– "The San Francisco Treat"

9

#25

Functional Programming

• You know OO and Structured Imperative

• Functional Programming
– Computation = evaluating (math) functions

– Avoid “global state” and “mutable data”

– Get stuff done = apply (higher-order) functions

– Avoid sequential commands

• Important Features
– Higher-order, first-class functions

– Closures and recursion

– Lists and list processing

#26

State

• The state of a program is all of the current

variable and heap values

• Imperative programs destructivel modify

existing state

• Functional programs yield new similar states

over time

SET

SET_1

add_elem(SETadd_elem(SETadd_elem(SETadd_elem(SET, item), item), item), item)

SET_2
add_elem(SETadd_elem(SETadd_elem(SETadd_elem(SET, item), item), item), item)

#27

List Syntax in OCaml

• Empty List []

• Singleton [element]

• Longer List [e1 ; e2 ; e3]

• Cons x :: [y;z] = [x;y;z]

• Append [w;x]@[y;z] = [w;x;y;z]

• List.length, List.filter, List.fold, List.map …

• More on these later!

• Every element in list must have same type

10

#28

Functional Example

• Simple Functional Set (built out of lists)
– let rec add_elem (s, e) =

– if s = [] then [e]

– else if List.hd s = e then s

– else List.hd s :: add_elem(List.tl s, e)

• Pattern-Matching Functional
– let rec add_elem (s,e) = match s with

– | [] -> [e]

– | hd :: tl when e = hd -> s

– | hd :: tl -> hd :: add_elem(tl, e)

#29

Imperative Code
• More cases to handle

– List* add_elem(List *s, item e) {

– if (s == NULL)

– return list(e, NULL);

– else if (s->hd == e)

– return s;

– else if (s->tl == NULL) {

– s->tl = list(e, NULL); return s;

– } else

– return add_elem(s->tl, e);

– }

I have stopped reading Stephen

King novels. Now I just read C

code instead.

- Richard O’Keefe

#30

Functional-Style Advantages

• Tractable program semantics

– Procedures are functions

– Formulate and prove assertions about code

– More readable

• Referential transparency

– Replace any expression by its value without

changing the result

• No side-effects

– Fewer errors

11

#31

Functional-Style Disadvantages

• Efficiency

– Copying takes time

• Compiler implementation

– Frequent memory allocation

• Unfamiliar (to you!)

– New programming style

• Not appropriate for every program

– Operating systems, etc.

3.96.5Python

5.62.4C# (mono)

9.11.7Java (JDK –server)

111.7Lisp

16

1.5

1.0

1.0

Speed

5.0Ruby

2.9OCaml

1.6C++ (g++)

1.1C (gcc)

SpaceLanguage

17 small benchmarks

#32

ML Innovative Features

• Type system

– Strongly typed

– Type inference

– Abstraction

• Modules

• Patterns

• Polymorphism

• Higher-order functions

• Concise formal semantics

There are many ways of trying to

understand programs. People often rely

too much on one way, which is called

“debugging” and consists of running a

partly-understood program to see if it

does what you expected. Another way,

which ML advocates, is to install some

means of understanding in the very

programs themselves.

- Robin Milner, 1997

#33

Type System
• Type Inference

– let rec add_elem (s,e) = match s with

– | [] -> [e]

– | hd :: tl when e = hd -> s

– | hd :: tl -> hd :: add_elem(tl, e)

– val add_elem : αααα list * αααα -> αααα list = <fun>

• ML infers types
– Inconsistent or incomplete type is an error

• Optional type declarations (exp : type)
– Clarify ambiguous cases

– Documentation

12

#34

Pattern Matching
• Simplifies Code (eliminates ifs, accessors)

– type btree = (* binary tree of strings *)

– | Node of btree * string * btree

– | Leaf of string

– let rec height tree = match tree with

– | Leaf _ -> 1

– | Node(x,_,y) -> 1 + max (height x) (height y)

– let rec mem tree elt = match tree with

– | Leaf str | Node(_,str,_) -> str = elt

– | Node(x,_,y) -> mem x elt || mem y elt

#35

Pattern Matching Mistakes

• What if I forget a case?

– let rec is_odd x = match x with

– | 0 -> false

– | 2 -> false

– | x when x > 2 -> is_odd (x-2)

– Warning P: this pattern-matching is not
exhaustive.

– Here is an example of a value that is not

matched: 1

#36

Polymorphism

• Functions and type inference are
polymorphic
– Operate on more than one type

– let rec length x = match x with

– | [] -> 0

– | hd :: tl -> 1 + length tl

– val length : α list -> int = <fun>

– length [1;2;3] = 3

– length [“algol”; ”smalltalk”; ”ml”] = 3

– length [1 ; “algol”] = ?

αmeans “any

one type”

13

#37

Higher-Order Functions
• Function are first-class values

– Can be used whenever a value is expected

– Notably, can be passed around

– Closure captures the environment

– let rec map f lst = match lst with
– | [] -> []
– | hd :: tl -> f hd :: map f tl

– val map : (αααα -> ββββ) -> αααα list -> ββββ list = <fun>
– let offset = 10 in
– let myfun x = x + offset in
– val myfun : int -> int = <fun>
– map myfun [1;8;22] = [11;18;32]

• Extremely powerful programming technique
– General iterators

– Implement abstraction

f is itself a
function!

#38

The Story of Fold

• We’ve seen length and map

• We can also imagine …

– sum [1; 5; 8] = 14

– product [1; 5; 8] = 40

– and [true; true; false] = false

– or [true; true; false] = true

– filter (fun x -> x>4) [1; 5; 8] = [5; 8]

– reverse [1; 5; 8] = [8; 5; 1]

– mem 5 [1; 5; 8] = true

• Can we build all of these?

#39

The House That Fold Built

• The fold operator comes from Recursion

Theory (Kleene, 1952)

– let rec fold f acc lst = match lst with

– | [] -> acc

– | hd :: tl -> fold f (f acc hd) tl

– val fold : (αααα -> ββββ -> αααα) -> αααα -> ββββ list -> αααα = <fun>

• Imagine we’re summing a list:

9 2 7 4 5 7 4 5… 11

f

4 518 … 27

acc lst

14

#40

It’s Lego Time

•• LetLet’’s build things out of Folds build things out of Fold

–– lengthlength lstlst = fold (fun acc = fold (fun acc eltelt --> > acc + 1acc + 1)) 00 lstlst

–– sumsum lstlst = fold (fun acc = fold (fun acc eltelt --> > acc + acc + eltelt)) 00 lstlst

–– productproduct lstlst = fold (fun acc = fold (fun acc eltelt --> > acc * acc * eltelt)) 11 lstlst

–– andand lstlst = fold (fun acc = fold (fun acc eltelt --> > acc acc &&&& eltelt)) truetrue lstlst

•• How would we do How would we do oror??

•• How would we do How would we do reversereverse??

#41

Tougher Legos
• Examples:

– reverse lst = fold (fun acc e -> acc @ [e]) [] lst
• Note typing: (acc : αααα list) (e : αααα)

– filter keep_it lst = fold (fun acc elt ->

– if keep_it elt then elt ::acc else acc) [] lst

– mem wanted lst = fold (fun acc elt ->

– acc || wanted = elt) false lst
• Note typing: (acc : bool) (e : αααα)

• How do we do map?
– Recall: map (fun x -> x +10) [1;2] = [11;12]

– Let’s write it on the board …

#42

Map From Fold

• let map myfun lst =

• fold (fun acc elt -> (myfun elt) :: acc) [] lst

– Types: (myfun : αααα -> ββββ)

– Types: (lst : αααα list)

– Types: (acc : ββββ list)

– Types: (elt : αααα)

• How do we do sort?

– (sort : (αααα * αααα -> bool) -> αααα list -> αααα list)

Do nothing which is of no use.

- Miyamoto Musashi, 1584-1645

15

#43

Sorting Examples
• langs = [“fortran”; “algol”; “c”]

• courses = [216; 333; 415]

• sort (fun a b -> a < b) langs
– [“algol”; “c”; “fortran”]

• sort (fun a b -> a > b) langs
– [“fortran”; “c”; “algol”]

• sort (fun a b -> strlen a < strlen b) langs
– [“c”; “algol”; “fortran”]

• sort (fun a b -> match is_odd a, is_odd b with

• | true, false -> true (* odd numbers first *)

• | false, true -> false (* even numbers last *)

• | _, _ -> a < b (* otherwise ascending *)) courses
– [333 ; 415 ; 216]

Java uses Inner

Classes for

this.

#44

Partial Application and Currying

• let myadd x y = x + y

• val myadd : int -> int -> int = <fun>

• myadd 3 5 = 8

• let addtwo = myadd 2
– How do we know what this means? We use referentail
transparency! Basically, just sustitute it in.

• val addtwo : int -> int = <fun>

• addtwo 77 = 79

• Currying: “if you fix some arguments, you
get a function of the remaining arguments”

#45

Applicability

• ML, Python and Ruby all support functional

programming

– closures, anonymous functions, etc.

• ML has strong static typing and type

inference (as in this lecture)

• Ruby and Python have “strong” dynamic

typing (or duck typing)

• All three combine OO and Functional

– … although it is rare to use both.

16

#46

Homework

• Thursday: Cool Reference Manual

• Thursday: Backus Speedcoding

• Friday: PA0 due

